
A New Mobile NFC Key Delivery Service

Pascal Urien

Department of Networking and Computer Science
Telecom ParisTech, 23 avenue d’Italie, - Paris, 75013

France
Pascal.Urien@telecom-paristech.fr

Christophe Kiennert

EtherTrust
63bis rue Gay Lussac, Paris, 75005

France
Christophe.Kiennert@ethertrust.com

Abstract— This paper introduces a new mobile service, delivering

keys for hotel rooms equipped with RFID locks. It works with

Android smartphones offering NFC facilities. Keys are made

with dual interface contactless smartcards equipped with

SSL/TLS stacks and compatible with Mifare legacy locks. Keys

cards securely download keys value from dedicated WEB server,

thanks to Internet and NFC connectivity offer by the Android

system. We plan to deploy an experimental platform with

industrial partners within the next months.

Keywords- Mobile service; security; NFC; smartcards; SSL/TLS

I. INTRODUCTION

Mobile service is a very attractive topic for the deployment
of the emerging always on society. It is expected [1] that in
2015, about one billion of smartphones, with full Internet
connectivity, will be sold every year. Android is a popular open
operating system for mobiles based on UNIX, whose version
1.0 was commercialized by the end of 1998. Two years later,
fall 2010, the 2.3 version (also refereed as Gingerbread) was
released with the support of Near Field Communication (NFC)
standard [2]. This technology appears in the first decade of the
21st century. It is a radio link, working at the 13,56 MHz
frequency and integrated in low power tamper resistant
microelectronic chips, usually named contactless smartcards.
These devices, battery free and feed by the electromagnetic
field, are widely used in Europe and Asia for ticketing, access
control and banking purposes. According to the NFC
terminology, Gingerbread supports the peer to peer mode (data
exchange between two NFC enabled devices), and the reader
mode (feeding and communication with an NFC device
working in the card mode). Despite the fact that the hardware
could also provide the card mode, this feature is not currently
supported by Android.

Figure 1. RFID lock, legacy system

This paper presents an experimental mobile service
targeting key delivering for electronic locks. The legacy service

(see for example [3]) is illustrated by figure 1. Electronic locks
are equipped with RFID readers, and work with RFID cards
(frequently including Mifare [6] components) in spite of
magnetic strip cards. A device named the Card Encoder,
belonging to a dedicated information system, write keys values
in RFID cards.

The security of electronic lock environment is a quite new
subject for the scientific community. The paper [4] proposes an
architecture working for locks equipped with microcontrollers,
and reading keys built from telephone smartcards. The
reference [5] describes a system that relays information,
collected from passive ISO 15693 RFIDs by readers embedded
in locks, toward central access control software.

Our new experimental platform (see figure 2) works with
dual interfaces RFIDs (whose structure is detailed by section
IV), establishing secure SSL/TLS sessions with a key server.
Internet connectivity and human interface is provided and
managed by an Android phone. The user is identified by the
X509 certificate stored in his key card, and thanks to its smart-
phone securely collects a key from the dedicated WEB server.

This paper is an extended version of the work previously
published in [23]. It is constructed according to the following
outline. Section 2 introduces the NFC technology. Section 3
briefly recalls the structure of the Android operating system,
and its NFC features. Section 4 introduces dual interfaces
RFIDs. Section 5 presents basic concepts of the EAP-TLS
application for contactless smartcard; it analyzes performances
issues for the prototype platform, and details JAVA APIs.
Section 6 describes the new secure key delivering services.
Section 7 provides some discussion about this work. Finally
Section 8 concludes this paper.

Figure 2. RFID Lock, new mobile service

II. ABOUT NFC RFID

The Near Field Communication (NFC) technology is a
radio interface working at 13,56 MHz. It supports several data
encoding schemes, delivering binary throughput ranging from

147 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

106, 212, 424 or 848 Kbits/s. The two main classes of such
modems are referred as typeA and typeB and are detailed by
the ISO 14443 and NFC standards. This technology is
embedded in small electronic chips with low power
consumption (less than 10mW), which are feed by
electromagnetic induction. A device equipped with an antenna
and usually named the reader, generates a magnetic field of
about 5 A/m, which according to the Lens laws induces a
tension (E) of about 2,2V on a rectangular loop with an area of
5x8 cm2.

E = 2 f o H S = 2,14 V
With f=13,56 106, o=4 10-7, H=5, S=40 10-4 (SI),
The working distance of this system is within 10 cm.

The RFID components are split in two categories,

- small chips (less than 1mm2) designed with cabled logic;

- secure microcontrollers chips (about 25 mm2) equipped
with CPU, RAM, Non Volatile Memory, and cryptographic
accelerators units.

A good illustration of the first RFID category is the Mifare
1K [6] (1K meaning one Kbits of memory) widely deployed
for ticketing applications or RFIDs keys [3].

Electronics passports (normalized by the ICAO standards
[7]) includes RFIDs belonging to the second category either
typeA or typeB. Information, especially biometric records, is
protected by various cryptographic procedures based on
3xDES, RSA, or ECCDH algorithms.

In this paper we present a highly secure key delivering
service dealing with smartphones and dual interfaces RFIDs.
These electronic chips equipped with an antenna, support both
the Mifare 1K and ISO 14443 (typeA) protocols and embeds a
secure microcontroller. Today some hotels are already
equipped with NFC locks, including a battery and a reader,
which read customers’ RFID cards.

The basic idea of our new service is to get a key from a
WEB server thanks to an SSL/TLS stack running in the RFID
secure microcontroller and monitored by Android software.
This data is afterwards transferred in the Mifare emulated card.

III. ABOUT ANDROID

Figure 3. The Android Activity state machine

Android [8] [9] [10] is an operating system originally
created by the company Android Inc. and supported by the
Open Handset Alliance, driven by the Google company. It used
a Linux kernel and provides a runtime environment based on
the java programming language. Applications are compiled
from JAVA modules, then transformed by the "dx" tool and
executed by a particular Virtual Machine called the Dalvik
Virtual Machine (DVM). This virtual machine processes code
bytes stored in Dalvik (.dex) files, whose format is optimized
for minimal memory footprint.

Figure 4. NFC device detection and data exhange via an Intent mechanism

An Activity is an application component that manages a
screen with which users can interact in order to do something.
It is associated with a lifecycle state machine (see figure 3),
which starts with the onCreate() event and ends with the
onDestroy() event. Threads created by an activity are typically
destroyed when shutdown occurs. The "back" key kills the
foreground activity while the "home" key switches to another
one. The onRestart() message notifies that the activity is going
to control again the foreground.

An activity may register to the Android system in order to
be launched by asynchronous messages named Intent. The list
of Intent processed by an application is fixed by an Intent Filter
facility.

An Android application structure is described by the file
AndroidManifest.xml. This object declares all components
(such as activities) used by the application. It also includes
required permissions such as

- Internet Access or NFC use,

- Filter Intent needed for asynchronous triggering,

- And minimum Android version required by the
application.

private void resolveIntent (Intent intent)
throws IllegalArgumentException, IllegalAccessException {

String action = intent.getAction();
 if (NfcAdapter.ACTION_TAG_DISCOVERED.equals(action))
 { Tag tag = intent.getParcelableExtra
 IsoDep TagI = IsoDep.get(tag) ; if (TagI== null) return ;

 try { TagI.connect();}
 catch (IOException e) {return;}

 byte request[]= {(byte)0x00,(byte)0xA4,(byte)0x04,(byte)0x00,
 (byte)0x07,(byte)0xA0,(byte)0x00,(byte)0x00,
 (byte)0x00,(byte)0x30, (byte)0x00,(byte)0x01};

// Send ISO7816 Request, Receive Response
try { byte[] response= TagI.transceive(request);
catch (IOException e) {return;}

 try {TagI.close();}
 catch (IOException e) {return;}

 if ((response[0]==(byte)0x90) && (response[1]== (byte)0x00))
 { tv.setText("OK");setContentView(tv); }
 return;
}

else return; } }

148 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

The Android version 2.3, also named Gingerbread, supports
NFC software APIs, building an abstract framework over a
NFC adapter chip (such as the PN65N, manufactured by NXP
and soldered on the Nexus S electronic board).

The NfcManager class enumerates the NFC adapters
available on the Android device board. Usually there is only
one chip, so the static method getDefaultAdapter() returns an
instance the class NfcAdapter, which represents the hardware
adapter.

An application that is registered to a RFID discovery event
(such as TAG_DISCOVERED) gets an Intent object, from
which is extracted a Tag object. This later is afterwards casted
to an abstract RFID object, in order to perform proper
Read/Write operations. As an illustration static methods like
MifareClassic.get(tag) or IsoDep.get(tag) respectively produce
MIFARE or ISO14443 instances of RFIDs.

Figure 4 illustrates the detection of an ISO14443 RFID
from software activated by an Intent. Upon success ISO7816
requests and responses are exchanged between the application
and the device.

IV. DUAL INTERFACE RFIDS

A dual interface RFID is a secure microcontroller whose
security is enforced by physical and logical countermeasures
manage by the embedded operating system. Our experimental
platform works with a JCOP41 device.

A. About Secure Microcontroler

Secure microcontrollers are electronic chips including
CPU, RAM, and nonvolatile memory such as E2PROM or
FLASH [11]. Security is enforced by various physical and
logical countermeasures, driven by a dedicated embedded
operating system. According to [12] about 5,5 billions of such
devices were manufactured in 2010, mainly as SIM cards
(75%) and banking cards (15 %). The format of information
exchanges with these components is detailed by the ISO7816
standard. It comprises requests and responses whose maximum
size is about 256 bytes. Multiple communication interfaces are
supported, including ISO7816 serial port, USB, and NFC radio
link.

Most of operating systems implement a Java Virtual
Machine, executing a standardized subset of the JAVA
language (see next section). Among them, JCOP (standing for
Java Card OpenPlatform) was designed by an IBM Zurich
research team [13], and since 2007 is supported by the NXP
company.

B. About JCOP

According to [14][15] it uses a Philips hardware chip (from
the P5CT072V0P family) composed of a processing unit,
security components, I/O ports, volatile and non-volatile
memories (4608 Bytes RAM, 160 KBytes ROM, 72 KBytes
E2PROM), a random number generator, and crypto co-
processors computing Triple-DES, AES and RSA procedures.
This component also embeds an ISO 14443 contactless radio
interface.

The JCOP41 operating system (see figure 5) includes a
Java Virtual Machine (JVM) implemented over the physical
platform via facilities of a Hardware Abstraction Layer (HAL).
A JVM works with a subset of the java language; it supports a
JavaCard Runtime Execution (JCRE) for Applet processing
and is associated with a set of packages standardized by the
Java Card Forum (JCF). These software libraries provide
cryptographic resources (SHA1, MD5, RSA…), and
management of information transfer over the radio interface.

An application is a set of Java classes belonging to the
same package, executed by the JCRE. It is downloaded and
installed thanks to the Card Manager component, whose
structure is defined by the Global Platform (GP) standard. The
security of this process is based on symmetric cryptographic
procedures enforcing mutual authentication, data transfer
confidentiality and integrity.

Our application is written for such javacards, with a
memory footprint of about 20 Kbytes; it manages TLS sessions
with remote WEB server and transfers keys values in the
Mifare sectors.

Figure 5. The JCOP41 Operating system

C. Mifare Emulation

Figure 6. MIFARE Memory Structure

A Classic Mifare 1K device [6] is a chip working with a
TypeA radio interface, which includes a secure 1Kbits
E2PROM. This memory is organized in 16 sectors with 4
blocks of 16 bytes each. Blocks are identified by an index
ranging from 0 to 63. The fourth block of every sectors (the
sector trailer) stores two 48 bits keys (KeyA and KeyB) ; the

149 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

remaining four bytes define the access conditions for the
blocks. Read and Write operations may be free or controlled by
authentication procedures dealing with KeyA or KeyB. The
block number 0, named Manufacturer Block, contains a four
bytes Unique Identifier (UID) and eleven bytes of
manufacturer data.

The authentication process uses a three pass protocol based
on so-called the Crypto-1 stream cipher, and two random
number produces by the reader and the Mifare card.

- The reader selects a sector to be accessed and chooses
Key A or Key B.

- The card reads the secret key and the access condition
from the sector trailer. It sends a random number r1

- The reader computes a response from the secret key and
the random number r1. It transmits a response with an
random number r2

- The cards checks the response and computes a new value
from r2

The Crypto-1 cipher consists of a linear feedback shift
register (LFSR) and filters function. A reverse engineering was
performed and attacks published in [16]. In a brute-force attack
an attacker records two challenge response exchanged between
the legitimate reader and a card. This attack takes under 50
minutes for trying 248 keys values using a dedicated FPGA chip

Never less this device is still widely used for ticketing or
keying services. Authentication weakness impact is reduced
when these RFIDs store cryptographic tokens that can be freely
read, such as those written in magnetic stripes for opening
locks.

D. Mifare Passwords

A dual interface RFID supports both Mifare and ISO 14443
radio protocol. It is often useful for the operating system (i.e.
javacard applications) to write or read data in Mifare blocks. A
dedicated API performs this task; for security reasons the
knowledge of KeyA or KeyB is not required. Instead of this
value, a parameter called the Mifare Password (MP, [14]) is
computed according to the following relation:

MP = h(IV) = DESDKEY1 o DES-1
DKEY2 o DESDKEY1 (IV)

Where the parameter IV is an 8 bytes null value, and
DKEY1 and DKEY2 are two DES keys (56 bits each) built
from KeyA or KeyB (48 bits) with 8 bits of padding set to zero.

In other words MP is computed with a one way (h) function
applied to KeyA or KeyB; the knowledge of its value gives
access to Mifare sectors.

But the calculation of h-1(MP) according to a brute force
method requires 248 iterations.

The JCOP operating system includes a Mifare API, which
comprises only one method:

short JZSystem.readWriteMifare

(short mode, byte[] data, short offset, short mifareBlock)
The parameters have the following meaning:

- mode: read or write access to a particular block.

- data: Data storage in RAM holding the (8 bytes) Mifare
Password, and providing further 16 bytes of space to carry
the data to be read or written

- offset: Offset into the data storage provided above,
indicating where the first byte of the Mifare Password
resides.

- mifareBlock: the Mifare block number to be read or
written.

The method returns a null value if access was successful.

V. EAP-TLS SMARTCARD

A. About EAP-TLS contactless smartcard

EAP-Support-In-Smartcard

EAP packets fragmentation

& re-assembly

EAP-TLS, TLS packets

re-assembly & fragmentation

TLS

STACK
Certificates

Management
Record

Handshake

Alert

Tamper Resistant

Micro Controller

Secure keys

storage and use.

Figure 7. The EAP-TLS application for contactless smartcard

The SSL (or Secure Socket Layer) and its IETF
standardized version TLS (Transport Layer Security) is the de
facto standard for the Internet security. The EAP-TLS protocol
[18] was initially designed for authentication purposes over
PPP links. It is today widely used in IEEE 802.1x compliant
infrastructures (such as Wi-Fi networks) and is supported by
the IKEv2 protocol for opening IPSEC secure channels. One of
its main benefits is the transport of SSL/TLS messages in EAP
(Extensible Authentication Protocol) packets, according to a
datagrams paradigm. Therefore it enables the deployment of
SSL/TLS services without TCP/IP flavors, and consequently is
well suited for secure microcontroller computing platform.

The functionalities of the EAP-TLS embedded application
are detailed by an IETF draft [19]. More details may be found
in [20] and [21].

The architecture of an EAP-TLS application is illustrated
by figure 7.

The EAP protocol provides fragmentation and reassembly
services. TLS packets maximum size is about 32768 (214)
bytes. They are split in smaller EAP messages working with an
acknowledgment mechanism. A second optional segmentation
process divides EAP data unit in small blocks (whose length is
less than 256 bytes) compatible with the NFC read/write
operations over the radio link.

150 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

The TLS stack is equipped with an X509 certificate and a
RSA private key used for client’s authentication in the TLS full
mode, illustrated by figure 7 (left part).

A session is initially opened according to a four way
handshake (the full mode, see figure 8, left part) in which client
and server are mutually authenticated by their certificates. At
the end of this phase (the Phase I according to figure 8) a
master key has been computed, cryptographic algorithms have
been negotiated for data privacy and integrity, and a set of
associated ephemeral keys (referred as the keys-block) has
been released. These keys are exported from the smartcard to
the Android phone that afterwards manages the TLS session,
and which typically performs HTTP encryption and decryption
operations (refereed as Phase II by figure 8)

The TLS resume mode works with a previously computed
master secret, according to a three ways handshake (see figure
8, right part). It is based on symmetric cryptographic, and
reduces the computing load on the server side; by default a
WEB server uses a full session only every 10 minutes. A
resume session is opened by the EAP-TLS application, which
afterwards transfers the keys-block to the mobile phone that
performs Phase II procedure.

It is important to notice that the TLS master secret is never
exported from the smartcard and remains securely stored in the
device.

Client hello (ClientRandom)

Server Hello (Session-id,

 ServerRandom)

Certificate

CertificateRequest

ServerHelloDone

Certificate

Certificate Verify

ChangeCipherSpec

(Encrypted) Finished
ChangeCipherSpec

(Encrypted) Finished

Client Server

Client hello (Session-id,

 ClientRandom)

Server Hello(Session-id,

 ServerRandom)

ChangeCipherSpec

(Encrypted) Finished

ChangeCipherSpec

(Encrypted) Finished

ClientKeyExchange

{PreMasterSecret}KpubS

Client Server

Record Layer in Ciphered Mode

Encrypted Application Messages

Record Layer in Ciphered Mode

Encrypted Application Messages

PHASE I

PHASE II

A

B

C

D

A

B

C

Figure 8. Phase I and phase II during an TLS session

B. Performancs issues

Because RFIDs are low power consumption devices, with
small computing resources, and furthermore are driven by
operating systems that manage countermeasures, computing
performance is a critical topic. Some basic parameters are
given by figure 9.

IO

Throughput

ms/

byte

MD5

ms/

block

SHA1

ms/

block

RSA

1024

PUB

ms

RSA

1024

PRIV

ms

0,125 2,0 4,0 26,0 120,0

Figure 9. Basic performances of the JCOP41 device

The four ways handshake (Phase I) of a full TLS session
(with RSA 1024 bits) costs 11,7s. It requires one encryption
with the private key (120 ms) two computations with public
keys (2x 26 ms). About 230 MD5 (230 x 2 ms) and SHA1 (230
x 4ms) calculations (dealing with 64 bytes blocks) are
performed. It exchanges 2,500 bytes, whose transfer costs
0,125 x 2500 = 310 ms. The remaining time (9,8s = 11,7 – 1,9)
is burnt by the java code execution.

The three ways handshake (Phase I) of a resume session
consumes 2,6s. It needs the exchange of 250 bytes (250x 0,125
= 31 ms), and the processing of 75 MD5 and SHA1 that
consumes 450ms. The remaining time (2,1s= 2,6 – 0,5) is spent
in the java code execution.

These experimental results show that most of the
computing time (with our JCOP device) is burnt by the
embedded virtual machine. However this is a not a general
behavior and tests with other javacards (running the same
application) present different figures, in which most of
computing times are consumed by cryptographic resources.

C. JAVA API

An EAP-TLS device is associated with a high level JAVA
API, quite similar to the well-known OPENSSL environment.

Two main java objects are defined, the tls-tandem class that
constitutes the core framework for the management of TLS
session with a EAP-TLS RFID, and the recordlayer class
created at the end of the Phase I TLS handshake, and which
performs all (HTTP) encryption decryption/operations. The
figure 12 illustrates the use of these APIS in our key service.

The tls-tandem class is made of three main methods:

- public tls_tandem(int mode, ReaderSC reader, String aid,
String pin, String identity)

- public recordlayer OpenSession(String ServerName, short
Port)

- public void CloseSession(recordlayer RecordLayer)

The constructor of the tls-tandem class setups the software
environment needed for TLS operations with external RFID,
with the following parameters,

- mode is the role of the RFID (either TLS CLIENT or TLS
SERVER)

- reader is an abstract representation of the RFID reader,
based on the NFC Android model. This object detects the
presence of an external RFID feed by the reader, and
provides support for IO operations.

151 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

- aid, is the Application Identifier for the application store
in the RFID. According to the ISO7816 standard, this
identifier size ranges between 5 to 16 bytes.

- pin is the optional PIN required for the RFID activation.

- identity is an optional alias that identifies the set of
parameters (client’s certificate, private key, CA Certificate)
to be used by the TLS stack.

The OpenSession method performs Phase I handshake with
a remote TLS server identified by its name and its port (usually
443). It returns a recordlayer object initialized with the
appropriate cryptographic parameters.

The CloseSession method deletes the TLS framework and
the associated resources.

The recordlayer object is created upon a successful TLS
Phase I handshake and realizes Phase II operations. It
comprises five main methods.

- public byte [] encrypt(byte[] msg). Perform data (typically
a HTTP request) encryption and integrity operations, and
return a TLS formatted packet.

- public byte[] send(). Transmit a TLS packet over the TCP
socket.

- public byte[] recv(). Receive a TLS packet from the TCP
socket.

- public byte [] decrypt(byte[] msg). Decrypt a TLS packet
and check its integrity.

- public void Close(). Close the TLS session.

VI. THE KEY DELIVERING USE CASE

Figure 10. The Key Delivering Architecture

The key mobile service architecture is illustrated by figure
10. A subscriber owns an Android NFC Smartphone and
contactless dual interfaces RFID embedding a Javacard
application (RA) that performs key downloading. The mobile
is equipped with a dedicated application (MA) implementing
features detailed in sections III and IV. All Dalvik applications
must be signed, but the Android operating system allows
software downloading from entrusted source, i.e. which are not
available from the Android Market store.

The key delivering process is summarized by figure 11.

Upon detection of the RFID by the Smartphone, the user is
prompted to select and start the appropriate (RA) application.

The TLS stack embedded in the RFID is activated, the mobile
application (MA) opens a TCP socket with the remote server,
and thereafter supervises the TLS handshake Phase I between
the RFID and the key server. Upon success the keys-block
computed by the RFID is transferred to the mobile which fully
manages the TLS session Phase II.

The mobile application builds an HTTP request transmitted
over the TLS session, i.e. the key repository is identified by an
URL such as https://www.server.com/getkey.php.

Figure 11. The Key Delivering Process

The requested file is located in a server area for which
mutual TLS authentication is mandatory. Therefore the RFID
is identified by its embedded certificate dynamically recorded
(on the key server side) by the PHP variable
$_SERVER['SSL_CLIENT_CERT'].

The getkey.php script uses the well known OPENSSL
facilities in order to extract the client’s RSA public key. It then
builds a data structure that we call the Key Container (KC),
which securely stores a set of data (the lock key, LK) to be
written in one or several Mifare blocks.

A container is made of two parts, a header and a trailer.

- The header is the encrypted value of the key (LK) with the
RFID public RSA key, according to the PKCS #1 standard.

- The trailer contains a PKCS#1 signature of the header
with a private key whose certificate is trusted by the RFID
EAP-TLS application (RA).

The hexadecimal ASCII dump of the container is returned
in the body of the HTTP response, which is collected by the
mobile phone.

Finally the Key Container is pushed by the mobile
application to the RFID. This later verifies the signature with
signatory’s public Key, and decrypts the LK value with its
private keys. It then uses the Mifare API and the associated
Mifare Password to write LK in the appropriate blocks.

The mobile software main module (MA) is illustrated by
figure 12. Upon detection of the RFID device, a tls-tandem
framework is created, which start the RA application.

Afterwards the https class starts the TLS Phase I handshake
with the key server, by invoking the OpenSession method that
returns a record-layer object. This last mentioned performs
encryption and decryption operations for the HTTP request and
the associated response.

MA

RA

152 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

The body of the HTTP response, i.e. the ASCII
representation of the key container is then written in the RFID,
which afterwards internally deciphers its content, checks its
authenticity and finally writes the key value in a Mifare block.

The dual interface contactless card is ready for opening its
paired electronic lock.

Figure 12. Mobile Software Main Application

VII. DISCUSSION AND FURTHER WORK

The main advantage of the experimental platform presented
in this paper is the compatibility with legacy solutions based on
Mifare RFIDs.

Keys card working with magnetic strips, are freely read and
written, and may be easily copied. Low cost RFIDs (such as

Mifare UltraLight devices cards), working with one time
programmable memories (i.e. memories in which a bit is
irreversibility set), provide a more reliable solution incentive to
hazardous magnetic interactions.

From a security point of view, RFIDs (for example the
Mifare 1K) whose reading is protected by mutual
authentication procedures realize anti-cloning mechanisms.
However the effectiveness of this legacy feature is
questionable, because of recent attacks on the Mifare Crypto-1
cryptographic algorithm.

Nerveless, by equipping a key card with a TLS/SSL stack,
including a certificate and a private key we give an identity to
this device. The container facility defined in section VI
establishes an asynchronous security channel between the key
server and the key card. Thanks to its mobile phone, delivering
Internet and NFC connectivity, the client collects a lock key at
every time from everywhere. A PIN code may be applied in
order to enforce a dual form factor authentication, i.e.
something you know (the PIN code) and something you have
(the dual interface key card).

A restriction of the key delivering to a specific location
could be easily supported, by only allowing the service from
Wi-Fi network located in the hotel lobby.

Hotel rooms are of course a natural use case for electronic
locks, because they are frequently booked, so that key renewal
is needed for privacy issues, which can’t be fulfilled by
classical mechanical devices. But others applications could be
targeted, for example car rental (more and more cars are
equipped with electronic locks), office rooms, and more
generally speaking all services that require entrance
authorizations for a limited amount of time.

A next generation of key cards could avoid today security
threats by implementing strong authentication mechanisms
between the card and the lock. For example in the Javacard
technology it is possible to share objects between applications.
According to this feature a key card could embed two
applications first for key delivering (with a TLS stack), and
second for interaction with the electronic lock.

An exciting perspective should be the use smartphones as
universal keys. The main issue deals with security, i.e. is this
class of devices enough secured for keys downloading and
storage?. They already include secure microcontrollers (usually
named Secure Elements) such as USIM modules or NFC
Controllers. These components are compatible with the
javacard technology, and therefore may securely execute
embedded applications. The two main problems that arise are
memory management and arbitration (what applications may
be stored and executed), and download control (what entity
controls/authorizes applications located in the secure elements).

From a trust point of view, loyalty cards delivered by hotels
and equipped with RFID devices appear as a legitimate device
for keys delivering and use. For practical reasons, a mobile
application could be common to all kinds of such loyalty cards.
We plan to test this new mobile service in a few months, with
industrial partners specialized in electronic locks and hotel
management systems.

private void resolveIntent (Intent intent) throws
IllegalArgumentException, IllegalAccessException {
String action = intent.getAction();

if (NfcAdapter.ACTION_TAG_DISCOVERED.equals(action))
{ Tag tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
TagI = IsoDep.get(tag) ;
if (TagI==null) { Box("Error","Non ISO Tag"); return;}

ReaderNFC myReader= new ReaderNFC(TagI);
tls-tandem myTlsTandem=
new tls-tandem(tls_tandem.CLIENT,myReader,
"A0000000300002FFFFFFFF8931323800","0000","client");

https reg = new https(myTlsTandem);
if (!reg.HTTPS(="www.server.com","/tandem/secure/getkey.php"))

Box("Error","HTTPS Error!!!");

String apdu1 = "00D0 8001 80 " + reg.body.substring(0,128);

String apdu2 = "00D0 8002 80 " + reg.body.substring(128,256);

String apdu3 = "00D0 8002 80 " + reg.body.substring(256,384);

String apdu4 = "00D0 8003 80 " + reg.body.substring(384,512);

myTlsTandem.SC_reader_socket.Echo_TAPDU(apdu1);

myTlsTandem.SC_reader_socket.Echo_TAPDU(apdu2);

myTlsTandem.SC_reader_socket.Echo_TAPDU(apdu3);

myTlsTandem.SC_reader_socket.Echo_TAPDU(apdu4);

myTlsTandem.Close(null); }

else { Box("Error","No card"); return; }

}

public class https {

tls-tandem tandem = null ;

record-layer RecordLayer=null;

 public String body=null;

public https(tls-tandem mytandem) {

tandem =mytandem;}

public boolean HTTPS(String host, String myfile)

{ boolean done;

if (tandem == null) return false;

RecordLayer = tandem.OpenSession(host,(short)443);

if (RecordLayer == null) return false;

done= http(myfile);

RecordLayer.Close();

return done ;

}

boolean http(String filename){…}

}

153 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

VIII. CONCLUSION

In this paper we presented a new key delivering platform
working with dual interfaces smartcards and Android mobile. It
is a new class of mobile applications in which the user is
equipped with a RFID and a smart-phone. The RFID access to
the Internet via an application running on the mobile, but
manages the security of the service. It is afterwards
autonomously used, what avoids the lack of battery issue.

REFERENCES

[1] http://www.gartner.com/it/page.jsp?id=1622614

[2] NFC Forum Specifications, http://www.nfc-forum.org/specs/

[3] The Classic RFID VingCard technology,
http://www.vingcard.com/page?id=4380

[4] Sypin, E.V.; Tunin, K.A.; Negodiaev, V.P.; Povernov, E.S.; "The
electronic lock on disposable telephone cards", Proceedings of 4th
Annual Workshop on Electron Devices and Materials, Siberian Russian ,
2003.

[5] Peusaari J., Kelkka R., Ikonen J., "An access control and time
management software solution using RFID" CompSysTech '09
Proceedings of the 10th International Conference on Computer Systems
and Technologies and Workshop for PhD Students in Computing, 2009.

[6] Mifare Standard Card IC MIF1 IC S50, Functional Specification,
Revision 5.1, Philips seminconductors, May 2001

[7] International Civil Aviation Organization, "Machine Readable Travel
Documents", ICAO Document 9303, Part 1,2,3

[8] "What is android ?", http://developer.android.com/guide/basics/what-is-
android.html

[9] Hassan, Z.S.; "Ubiquitous computing and android", Third International
Conference on Digital Information Management, 2008. ICDIM 2008.

[10] Enck, W.; Ongtang, M.; McDaniel, P.; "Understanding Android Security
", IEEE Security & Privacy, Volume: 7 , Issue: 1, 2009

[11] Jurgensen, T.M. ET. al., "Smart Cards: The Developer's Toolkit",
Prentice Hall PTR, 2002, ISBN 0130937304

[12] http://www.eurosmart.com/

[13] Baentsch, ET All, "JavaCard-from hype to reality", Concurrency, IEEE
Volume: 7, Issue: 4

[14] Certification Report, BSI-DSZ-CC-0348-2006 for Philips Secure Smart
Card Controller P5CT072V0P, P5CC072V0P, P5CD072V0P and
P5CD036V0P each with specific IC Dedicated Software from Philips
Semiconductors GmbH Business Line
Identification,https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Zertifizierung/Reporte03/0348a_pdf.pdf?__blob=publicationFile

[15] Certification Report, BSI-DSZ-CC-0426-2007 for NXP P541G072V0P
(JCOP 41 v2.3.1) from IBM Deutschland Entwicklung GmbH
http://www.commoncriteriaportal.org/files/epfiles/0426a.pdf

[16] Nohl, K.; Evans, D.; Plotz, S.; Plotz, H., "Reverse-Engineering a
Cryptographic RFID Tag", USENIX Security Symposium. San Jose,
2008.

[17] AN02105, Secure Access to Mifare Memory, on Dual Interface Smart
Card ICs, Application Note, Philips seminconductors, January 2002

[18] RFC 2716, "PPP EAP TLS Authentication Protocol". October 1999.

[19] IETF draft, , "EAP-Support in Smartcard", August 2011.

[20] Urien P., "Tandem Smart Cards: Enforcing Trust for TLS-Based
Network Services", Eighth International Workshop on Applications and
Services in Wireless Networks, ASWN '08., 2008

[21] Urien P., "Collaboration of SSL smart cards within the WEB2
landscape", In proceeding of CTS'09, 2009

[22] Urien, P.; "OpenID Provider based on SSL Smart Cards", in proceedings
of IEEE CCNC 2010, 2010

[23] Urien P., Kiennert C., "A New Key Delivering Platform Based on NFC
Enabled Android Phone and Dual Interfaces EAP-TLS Contactless
Smartcards", posters session, in proceddings of Third International

Conference on Mobile Computing, Applications and Services,
MOBICASE 2011.

154 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

