
Software Copy Detection Based on Watermark in

Output Content

Kazuhide Fukushima, Shinsaku Kiyomoto, and Yutaka Miyake
KDDI R&D Laboratories, Inc.

2–1–15 Ohara, Fujimino, Saitama, 356–8502, JAPAN
Email: {ka-fukushima,kiyomoto,miyake}@kddilabs.jp

Abstract—This paper proposes a copy detection
framework for software based on watermarks embedded
in output. Our framework targets enterprise software
that generates commercial content where the number
of users is limited. We provide four candidates for
embedded information and compare them in terms of
security and efficiency. Then, we propose watermarking
mechanisms for programs and VHDL code in order
to apply our framework to detecting the copying of
software development kits and hardware design tools.
Experimental results show that we can securely embed
watermarks in VHDL code with a feasible overhead.

I. Introduction

The worldwide economic loss caused by software piracy
was estimated to be 59 billion dollars in 2010 [1]. Copy
protection schemes have been proposed to deal with this
problem, but many of these schemes have been cracked due
to the limitations of software-based approaches. In online
license checking schemes, software accesses a license man-
agement server to register ownership of a user when the
software is installed or executed. These schemes have the
drawback that the software vendor must manage a license
management server, and the software requires Internet
access. Offline checking schemes eliminate these problems.
Generally, these schemes use a tamper-proof device in
order to manage license information and/or a license-
checking mechanism. However, they impose additional
cost and effort on users. Another solution is to embed
information in the output as a watermark. This solution is
not a real-time solution, but the software execution does
not require online access or special hardware.

In this paper, we propose a copy detection framework
based on watermarks embedded in output content. We
present four kinds of information to be embedded as a
watermark: 1) software ID associated with a user, 2)
software ID and PC information, 3) PC information and
execution dates, 4) software ID, PC information and ex-
ecution dates. Then, the transformation process for the
information and watermarking mechanisms for programs
are discussed. Next, we propose watermarking mechanisms
based on a software obfuscation technique and apply our
framework to the detection of copied hardware design
tools. We evaluate the size of the watermarked VHDL code
for an electronic circuit in order to show the applicability
of our watermarking mechanism.

The rest of the paper is organized as follows: related
work is summarized in Section II. Section III provides our
copy detection framework based on watermarks embedded
in output content. We compare the candidates for embed-
ded information and watermarking mechanisms in terms
of security and efficiency. We apply our framework to
the protection of software development kits and hardware
design tools in Section IV. Watermarking mechanisms
based on a software obfuscation technique for programs
and VHDL code are proposed. We conclude this paper in
Section V.

II. Related Work

Digital watermarking is a technique that embeds aux-
iliary information in content. This information is used to
prove the ownership of copyright of content or to trace
a user who distributes content. Previously, digital water-
marking schemes aimed mainly at directly copyrighted
content such as image data, audio data, and text data.
These kinds of content have a high level of redundancy,
so in many cases, a user cannot recognize that the con-
tent is different even when several of its bits have been
changed. Watermarking schemes for software have also
been proposed in order to prove unauthorized copying
of software. Monden, et al. [2] proposed a scheme for
Java byte codes that embeds a watermark in opcodes
and numeric operands in dummy methods. Venkatesan et
al. [3] proposed a scheme that turns a watermark into a
control flow graph and merges it into the graph of the
original software. These are static watermarking schemes,
that is, the watermark can be detected without executing
software. Collberg et al. [4] and Thomborson et al. [5]
proposed a dynamic watermarking scheme, in which a
watermark is output when the software is executed with
specific input. After that, several dynamic schemes [6], [7]
have been proposed. Watermarking schemes for hardware
description languages have also been proposed. Yuan et
al. [8] proposed schemes that embed watermarks in re-
dundant hardware descriptions for don’t-care conditions.

A software obfuscation scheme transforms original
source code or a binary program into an obfuscated source
code or program that is more complicated and difficult
to analyze, while still preserving its functionality. Barak
et al. [9] showed the existence of classes of functions that

163 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

Software Software

Content

WM(SWA)

Content

WM(SWA)

Unauthorized copying

(Offline)

Detection

Software

Content

WM(SWB)

Alice BobCharlie

Fig. 1. Proposed framework

cannot be obfuscated. However, some practical obfuscation
schemes have been proposed. These schemes are intended
to make the cost of analyzing a program higher than
the value of the program. Gannod et al. [10] proposed
an obfuscation scheme that obfuscates loops. Collberg et
al. [11] proposed a scheme that inserts dummy instructions
using conditional branching. Chan et al. [12] proposed a
scheme that modifies identifiers contained in Java byte
code in order to protect the code against decompilation.
Sosonkin et al. [13] proposed a scheme that changes the
structure of classes in a Java code by merging and dividing
them. Obfuscation schemes with a theoretical basis have
also been proposed. Wang et al. [14] and Sakabe et al. [15]
proposed obfuscation schemes based on NP-hard prob-
lems. Collberg et al. [16] and Fukushima et al. [17] have
both proposed obfuscation schemes that encode variables.
There are also some software obfuscation schemes that
target VHDL code [18], [19], [20].

III. Copy Detection Framework

We propose a framework that enables software vendors
to detect unauthorized software copying by discovering
watermarks embedded in output content. The target soft-
ware automatically embeds a watermark into output.

Figure 1 shows our framework. The software vendor can
detect unauthorized copying of the software by extracting
watermarks WM (SW A) from the output content. The
detection process varies according to information that em-
bedded as a watermark; the detailed process is described
in Section III.B. We do not always need to determine that
Alice gave a copy of the software to Bob. Instead, it is
important to detect the fact of copying. There are many
existing studies on watermarking schemes to confirm the
distribution or reuse of content. Thus, we discuss only
an embedding mechanism for WM (SW) in the following
sections of this paper.

We will show the assumptions in Section III.A. Sec-
tion III.B discusses the embedded information and de-
tection process. Information transformation and water-
marking mechanisms are described in Section III.C and
Section III.D, respectively.

A. Assumptions

Our framework targets enterprise software that gener-
ates commercial content for which the number of users is

limited. In this situation, detection of unauthorized copy-
ing of the software is important, as well as identification of
malicious users. One effective approach is to warn all the
users that the software vendor will take legal action. The
threat of legal action causes a user to hesitate to distribute
the software on the Internet. Instead, the user may give a
copy of the software to a colleague offline. The colleague
uses the software in order to distribute or sell content.
Our framework thus focuses on a watermark embedded in
output content.

We assume that a secure software obfuscation scheme
for the software is available. In our framework, a water-
mark embedding function added to the target software
is essential. If this function is removed or bypassed, the
vendor can neither identify illegal users nor detect the
fact of unauthorized copies; that is a limitation of our
framework. Thus, we have to obfuscate the software in or-
der to protect the watermark embedding function against
analysis, alteration, or removal.

B. Embedded Information

We consider four candidates for embedding as a water-
mark: 1) software ID associated with a user, 2) software
ID and PC information, 3) PC information and execution
dates, and 4) Software ID, PC information and execution
dates.

1) Software ID Associated with a User: The software
embeds the software ID in its output. We assume that
software ID is associated with a user when the software is
purchased. A record of the software ID assigned to each
user name must be kept by the software vendor. Copying of
the software is detected by a watermark indicating that the
provider of some content is different from the registered
user of the software.

Assume that the software has the software ID SW A

associated with Alice. She gives a copy of the software to
Bob. Then, Bob executes the software and obtains content.
The software vendor can detect the unauthorized copying
from the watermark extracted from Bob’s content. The
watermark indicates that the original user of the software
was Alice.

2) Software ID and PC Information: The software em-
beds both the software ID and PC information in its out-
put. Unauthorized copying of the software is detected by
finding watermarks that indicate that the same software
was executed on two or more PCs.

We assume Alice has the software SW A. She executed
the software on her PC PC A and generated content. Then,
she gave a copy of the software to Bob. Bob executed the
software on his PC PC B and generated other content. The
software vendor can detect the copying of the software
from the watermarks 〈SW A, PC A〉 and 〈SW A, PC B〉.
These watermarks indicate SW A was executed on PC A

and PC B .
3) PC Information and Execution Dates: The software

embeds both PC information and execution dates in the

164 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

output content. This approach requires a trusted clock
as well as a timestamp technique [21]. Software copying
is detected by finding a watermark that indicates the
software was executed on two or PCs.

Assume that Alice executes the software at 9:00 on
January 1st and at 9:00 on Jan 2nd on PC PC A, and gives
a copy of the software to Bob. Then, Bob executes the
software at 9:00 on January 3rd on PC PC B . The vendor
can detect the copying from the watermark extracted from
Bob’s content. The watermark indicates that the software
has been executed on two PCs.

4) Software ID, PC Information, and Execution Dates:
The software embeds the software ID, PC information and
execution dates in the output content. Software copying is
detected by finding the telltale watermarks, as in the two
cases above. The vendor can detect software copying from
watermarks that have the same software ID together with
inconsistent execution dates.

Assume that Alice executes the software SW A at 9:00
on January 1st and at 9:00 on January 5. Bob executes the
copied software SW A at 9:00 on January 3rd. The software
vendor can detect the copying from the watermarks. The
two watermarks contain the same software ID, but the
execution dates are inconsistent.

5) Comparison: We compare the four candidates for
embedded information in terms of security, usability, ef-
ficiency of copy detection, and watermark size. Table I
summarizes our comparison.

a) Security: Software copying within the same office
is difficult to detect when only the software ID is embedded
in the output content. A user gives a copy of the software
to a colleague. The colleague generates content using
the software and sells the content. In this situation, the
colleague can claim that the content was generated by the
original user.

A user can avoid detection by conducting a back-up
attack if the execution dates are embedded. The user can
make a copy of the software with no execution dates by
backing it up. The back-up attack is possible since an
execution time is dynamic data and different for every
execution. However, software ID and PC information are
static data and secure against this attack.

b) Usability: Embedding the PC information implies
a strong restriction, i.e., a user must work on one unique
machine with the same components. This issue can be
solved by notifying the change of the target PC to the
vendor. When a user wants to replace some parts of PC
or entire PC, one needs to notify the new PC information
to the vendor. The vendor replaces the old PC information
with the new one in the detection process.

c) Efficiency of Copy Detection: Unauthorized copy-
ing can be detected from only one piece of content if the
software ID associated with a user, or execution dates are
embedded. However, we need two or more pieces of content
to detect copying if both the software ID and PC infor-
mation, or both the software ID and execution dates are

embedded. We have to find two watermarks that contain
the same software ID and different PC information.

d) Watermark Size: Software ID with 16 bits is suf-
ficient, since the number of users is limited. We need an
identifier with at least 32 bits to identify the hardware
information for a PC, considering the overall number
of PCs. We can use hardware information such as the
identifier of a processor, hard disk drive, motherboard or
the MAC address of a network interface. However, the
MAC addresses of some network interface devices can
be altered. Furthermore, a user may replace a processor
or a hard disk drive. These identifiers may not uniquely
specify a PC. We may use the identifier of a motherboard
to generate PC information, since the motherboard is
considered to be the most essential component of a PC.
Operating systems such as UNIX and Microsoft Windows
use 32 bits to identify the date and time, and this can be
used as the execution time. The datum is the number of
seconds from January 1st 1970, or from 1900, to now. We
have to embed a watermark with 32e bits where e is the
number of executions.

C. Information Transformation

In the first step of embedding information, the soft-
ware transforms the information into secure encrypted
data. First, the software calculates the hash value of the
information and concatenates the hash value with the
information, and then the software encrypts the data using
the software vendor’s key. A public-key based random
encryption algorithm such as AES-WRAP [22] or RSA-
OAEP [23], [24] is used for the encryption to detect data
corruption. The key is securely embedded in valid software
by the software vendor. The vendor has a private key for
decrypting the data. The vendor obtains encrypted data
from content, decrypts it, and verifies the hash value of
the information. The objective of the transformation is as
follows:

• Alteration of the information can be detected. If an
attacker without the key alters watermarked content,
the vendor can detect the alteration. The vendor
cannot correctly decrypt the information or fails to
verify the information.

• Embedded information becomes pseudo-random data.
The software transforms the information into pseudo-
random data using an encryption algorithm. Different
embedded data are generated for each transformation
from the same information. With randomized embed-
ded data, the attacker will find it more difficult to
discover the hiding techniques.

• Embedded information becomes protected data. A
valid software vendor who has the private key can de-
crypt the information and detect unauthorized copy-
ing. The information may include sensitive informa-
tion related to a user’s privacy. Thus, the information
should only be traceable by the vendor.

165 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

TABLE I
Comparison of watermarking candidates

Information Assumptions Advantages Disadvantages
Software ID User registration Fixed-size watermark Local copying

Copy detection from one output
Secure against backup copying

Software ID Unique PC info. Fixed-size watermark Copy detection from multiple outputs
and PC information Secure against backup copying

PC information Trusted clock Copy detection from one output Backup copying
and execution dates Unique PC information Variable-size watermark

Software ID, PC information, Trusted clock Copy detection from one output Backup copying
and exec. dates Unique PC information Multiple detection Variable-size watermark

D. Watermarking Mechanisms

Existing digital watermarking schemes [25], [26] are
available for content such as image data, audio data, and
text data. On the other hand, some enterprise software
(e.g. software development kits and hardware design tools)
outputs a program or source code as output content.
We have proposed watermarking mechanisms based on a
software obfuscation technique that can be applied to pro-
grams and source code written by a hardware description
language.

IV. Case Study

We apply the proposed framework for detecting the
copying of software development kits and hardware de-
scription tools. A software development kit is a group of
tools to develop applications. Various software develop-
ment kits for application frameworks, operating systems
and embedded systems are available. However, hardware
design tools are used to design electronic circuits such as
LSI systems. They enable electronic circuits be designed
using a GUI interface, and they output source codes
in a hardware description language. Enterprise software
development kits and hardware design tools are expensive,
and unauthorized copying seriously affects the revenue
of vendors. Many copy protection schemes have been
proposed, but there is no perfect solution. Thus, we need
not only techniques to prevent unauthorized copying but
also a framework for detection.

We apply our proposed framework to protect these kinds
of software. The output is a program or source code
written by a hardware description language. Generally,
programs and source code have less redundancy than
normal digital content. It is difficult to efficiently embed
a watermark in them. We first propose watermark em-
bedding mechanisms for programs in Section IV.A. These
mechanisms can be applied to the source code of VHSIC
Hardware Description Language (VHDL). We evaluate the
size of the watermarked VHDL code in Section IV.B.
Section IV.C and IV.D evaluate the security and efficiency
of these watermarking mechanisms.

A. Application to Software Development Kits

The output of a software development kit is a program.
We thus propose watermarking mechanisms for programs.

The proposed mechanisms use a software obfuscation
technique: the xor-encoding scheme [17]. The obfuscation
scheme encodes multiple variables simultaneously using
a Boolean matrix and an integer vector. The encoding
process uses only exclusive-or operations.

1) Mechanisms Using Dummy Instructions: Monden et
al. [2] proposed a watermarking scheme for a Java program
that embeds a watermark using a dummy method. We can
add dummy instructions that are never actually executed.
Thus, we can keep the functionality of the software. A
watermark can be embedded in numerical data and op-
erations in these dummy instructions. The operation +
can be replaced with -, *, /, %, and, or, or xor. One
of eight operations can be replaced with another without
violating the grammar1. We can embed 3-bit information
by replacing this information with any of these eight
opcodes when we encounter one of them in a program.
That is, 000 is assigned to +, 001 to -, 010 to *, . . . , and
111 to ^.

In this mechanism, a sophisticated predicate is required
to conceal the fact that the instructions in the if state-
ment are dummy instructions. If we use a trivial predicate
such as i xor i < 0, a user may realize that these in-
structions are dummy instructions for embedding a water-
mark. The user may remove or alter these instructions to
modify the watermark. We need a predicate that is difficult
to analyze, but is always evaluated as false. This predicate
is called an opaque predicate. We can construct an opaque
predicate using the xor-encoding scheme. This obfuscation
scheme encodes multiple variables using a matrix and
vector as follows:

A

B

C

 =

0 1
1 1
1 0

(

a

b

)

⊕

10010110
01100101
10100101

 (1)

In this situation, two variables a and b are encoded to A, B,
and C. Encoded variables A, B, and C satisfy the non-trivial
relation A ⊕ B ⊕ C ⊕ 01010110 = 0. Thus, we can construct
an opaque predicate using this relation. For example, if

((A^B^C^01010110) < 0) is a false opaque predicate. On
the other hand, normal predicate if (a < 0), which is

1Note that the replacements change the semantics of the code.
However, these instructions are never executed and do not affect the
original code.

166 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

TABLE II
Evaluation environment

FPGA designing tool Xilinx ISE 10.1
Synthesis tool Xilinx Synthesis Tool
Simulator Modelsim-XE VHDL
Generated simulation language VHDL

TABLE III
Watermarking mechanism with opaque predicate [27]

Watermark size [bits] 8 16 32 64 128
Number of slices 8 8 8 13 15
Number of flip-flops 8 8 8 8 8
Number of LUTs 15 17 17 30 26

sometimes evaluated as true and sometimes as false, is
transformed into if (A^B^11110011 < 0). It is difficult
to distinguish between an opaque predicate and a normal
predicate since they have the same form.

2) Mechanism Using Software Obfuscation Technique:
We propose watermark embedding mechanisms based on
the above obfuscation scheme. We can embed a watermark
in a dummy variable by assigning arbitrary data to this
variable. However, an attacker can specify the dummy
variable since the value of this variable is not used. To
address this problem, we use the xor-encoding scheme.
This obfuscation scheme makes it difficult to specify the
dummy variable since the value of the dummy variable
is mixed with those of the existing variables. Only the
software vendor, who knows the key, can decode the
variables and obtain the watermark.

B. Application to Hardware Design Tools

The output of a hardware design tool is source code
written for hardware description language. Thus, we select
VHDL code as our watermarking target. The embedded
information and watermarking mechanisms are evaluated
by comparing FPGA circuit descriptions that include
watermarks. The circuit size is examined with respect to
the following quantities:

• The number of slices which is a functional unit on
an FPGA circuit. Their number is determined by the
number of flip-flops and look-up tables (LUTs).

• The number of flip-flops.
• The number of LUTs with four inputs.

The evaluation environment is shown in Table II. We show
the watermarked VHDL code in the Appendix.

We made a VHDL code for an 8-bit counter as a sample
code. Figure 2 shows the code. The circuit generated from
the original VHDL code has 8 slices, 8 flip-flops, and 15
LUTs. To begin with, we embedded a watermark by using
the watermarking mechanism based on dummy instruc-
tions. This mechanism relies on opaque predicates. We
used the following opaque predicates: a numerical predi-
cate proposed by Collberg et al. [27] (lecture 13, section H,
(1)) based on encoded variables. We made five circuits
with 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit watermarks.

TABLE IV
Watermarking mechanism using our proposed opaque

predicate

Watermark size [bits] 8 16 32 64 128
Number of slices 8 11 13 15 20
Number of flip-flops 14 12 16 16 28
Number of LUTs 20 22 27 29 42

TABLE V
Watermarking mechanism using software obfuscation

Watermark size [bits] 8 16 32 64 128
Number of slices 14 22 36 36 40
Number of flip-flops 14 12 28 35 38
Number of LUTs 20 22 47 69 76

Table III shows the size of the circuits generated from
watermarked VHDL codes. Then, we used a false opaque
predicate if(A xor B xor C xor 01010110 < 0) based
on Equation (1), and made five circuits with watermarks.
Table IV shows the size of the circuits with watermarks.
These tables show that the watermaking mechanism with
the obfuscation technique requires larger overhead size
except for a case. The case seems to beattributed to an
inefficientlogic synthesis by the tool. Finally, we embedded
watermarks in VHDL codes using the obfuscation tech-
nique, and obtained circuits. We introduced redundant
variables to reserve the space for embedding watermarks.
For example, an assignment instruction a = b; can be
transformed to c = b; a = c; where c is a redundant
variable. Table V shows the circuit size. Compilers or logic
s tools may remove the redundant code. However, it is
difficult for these tools to the redundant variables of an
obfuscated code. Note that all the variables are used to
calculate the next value in the obfuscated code.

We can apply the proposed framework while keeping a
reasonable circuit size overhead by embedding either the
software ID or both the software ID and PC information.
The execution dates are not suitable to be embedded in
programs and VHDL code due to their large data size.

C. Security Analysis

We define three attacks on watermarking mechanisms.
Then, we discuss the security of the proposed mechanism
when they are applied to programs and VHDL code.

1) Attack Model: We consider the following attacks in
our security evaluation.

a) Static Attack.: Static attacks analyze water-
marked content without executing the program or imple-
menting the electronic circuit. An attacker identifies where
watermarks are embedded, and alters or removes them.

b) Dynamic Attack.: Dynamic attacks analyze water-
marked content by executing the program or implementing
the electronic circuit. An attacker can user a program
debugger or logic simulator to efficiently identify the re-
dundant parts of a program or VHDL code.

c) Coalition Attack.: Watermarked content is distinct
for every user. In coalition attacks, users can identify

167 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

the position of the watermark by comparing two or more
pieces of content generated by distinct software.

2) Programs: Watermarking mechanisms based on re-
dundant descriptions and dummy instructions are not
robust. If an attacker realizes that there are redundant
parts in a program, the attacker can alter or remove the
watermark. We can improve security against static attacks
by using sophisticated opaque predicates, but they still
remain vulnerable to dynamic attacks. The attacker may
find dummy functions and opaque predicates by using
debuggers. A watermarking mechanism using software
obfuscation can protect against both static and dynamic
attacks. Static attacks against the software obfuscation
technique require Ω(2m

2

) computational complexity [17]
where m is the number of encoded variables. Furthermore,
the dummy data is mixed with the existing data and stored
in multiple variables. All of the variables are used when the
program is executed. Thus, this mechanism is sufficiently
robust to resist dynamic attacks.

3) VHDL Code: Watermarking mechanisms based on
redundant descriptions and dummy instructions are not
robust. If an attacker realizes that there are redundant
parts in VHDL code for electronic circuits, the attacker
can alter or remove the watermark. We can improve
the security against static attacks by using sophisticated
opaque predicates, but they still remain vulnerable to
dynamic attacks. A watermarking mechanism based on
software obfuscation can protect against both static and
dynamic attacks. Static attacks against the software
obfuscation technique require Ω(2m

2

) computational
complexity [17] where m is the number of encoded
variables. Furthermore, dummy data is mixed with
existing data and stored in multiple variables. All of the
variables are used and updated in the electronic circuit
implemented by the VHDL code. Thus, this mechanism
is sufficiently robust to resist dynamic attacks.

We can use a software obfuscation technique to achieve
security against coalition attacks. For example, there are
sophisticated tools [28] to compare different versions of the
same software. Obfuscation can provide a distinct trans-
formation for each user so that straightforward comparison
does not work. In this case, a desirable technique is a
probabilistic scheme or scheme using a parameter that
controls the transformation. Our obfuscation scheme [17]
can satisfy the requirement by randomly changing the
encoding rules.

D. Efficiency Analysis

We discuss the efficiency of the proposed mechanism as
applied to programs and VHDL code. The efficiency is
evaluated by the increase of program size or circuit size
designed by the watermarked VHDL code.

1) Programs: Mechanisms based on redundant descrip-
tions and mechanisms using dummy instructions do not
affect the execution efficiency of the programs. The size

of the program increases in proportion to the watermark
size.

On the other hand, a mechanism based on software
obfuscation increases the program size and execution time
by O(m3) [17] where m is the number of encoded variables.
These overheads can be reduced further by applying the
obfuscation technique only to limited parts of programs.

2) VHDL Code: A mechanism based on redundant
descriptions, and mechanisms using dummy instructions,
increase the size of the electronic circuit designed by the
watermarked VHDL code in proportion to the watermark
size. However, this does not have a significant impact on
the propagation delay since the dummy circuit is only used
for watermark extraction and does not affect the essential
parts of the original circuit.

A mechanism based on the software obfuscation tech-
nique increases the size of the electric circuit by O(m3).
The increase in the propagation delay stays within O(m)
with a parallelization technique.

These overheads can be reduced further by applying the
obfuscation technique only to limited parts of VHDL code.
Table III, IV, and V show the size of an electronic circuit
implemented by the watermarked content. The number of
flip-flops does not increase when opaque predicates [27] are
used, and the size increase stays within a factor of two for a
128-bit watermark when our proposed predicates are used.
Our experimental results in Table V show that the increase
in the number of flip-flops is less than tripled (from 14 to
42) for a 128-bit watermark. Watermarking mechanisms
based on dummy instructions are suitable for small pro-
grams or VHDL code where the allowable overhead is
limited. A mechanism based on the software obfuscation
technique is suitable for complicated or valuable outputs
where the allowable overhead is relatively large.

3) Limitations and Improvements: Our framework em-
beds a watermark into output of the target software.
The users of software may consider that it may make a
fatal impact on debugging and verification processes. In
this case, we can use watermarking mechanisms based on
opaque predicates. The watermarks is embedded into the
dummy parts do not affect the original functions.

When our framework is applied to a hardware design
tool, it is difficult to extract a watermark directly from
a chip. Some chips have physical protections like photo-
sensitive or air-sensitive destruction systems. In this case,
we should use the dynamic watermark mechanisms [4], [5],
[6], [7]. A watermarked chip returns special output as a
watermark for specific input.

V. Conclusion

In this paper, we propose a software copying detection
framework based on watermarks embedded in output. Our
framework targets expensive software where the number of
users is limited. We investigate 1) embedded information
as a watermark, 2) information transformation, and 3)
watermarking mechanisms for programs. Our evaluation

168 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

shows that the embedded information and watermarking
mechanisms involve tradeoffs between security and effi-
ciency. The proposed watermarking mechanisms target
programs and VHDL code as outputs. Our framework can
be used to detect the copying of software development kits
and hardware design tools by using these mechanisms.
Experimental results show that we can securely embed
watermarks in a VHDL code with a feasible overhead.

Acknowledgment

The authors would like to thank anonymous reviewers
and program committee members for useful comments on
an earlier version of this manuscript.

References

[1] Business Software Alliance, “Eighth annual BSA global software
2010 piracy study,” http://portal.bsa.org/globalpiracy2010/
downloads/study_pdf/2010_BSA_Piracy_Study-Standard.
pdf, 2011.

[2] A. Monden, H. Iida, K. Matsumoto, K. Inoue, and K. Torii,
“A practical method for watermarking java programs,” in Proc.
24th Computer Software and Applications Conference (COMP-
SAC2000), 2000, pp. 191–197.

[3] R. Venkatesan, V. Vazirani, and S. Sinha, “A graph theoretic
approach to software watermarking,” in Proc. 4th International
Information Hiding Workshop (IHW2001), Lecture Notes in
Computer Science 2137, 2001, pp. 157–168.

[4] C. Collberg and C. Thomborson, “Software watermarking: Mod-
els and dynamic embeddings,” in Proc. Principles of Program-
ming Languages 1999 (POPL1999), 1999, pp. 311–324.

[5] C. Thomborson, J. Nagra, R. Somaraju, and C. He, “Tamper-
proofing software watermarks,” in Proc. 2nd Australasian Infor-
mation Security Workshop (AISW2004), 2004, pp. 27–36.

[6] X. Zhang, F. He, and W. Zuo, “Hash function based software
watermarking,” in Proc of Advanced Software Engineering and
Its Applications (ASEA2008), 2008, pp. 95–98.

[7] Y. Ke-xin, Y. Ke, and Z. Jian-qi, “A robust dynamic software
watermarking,” in Proc. of 2009 International Conference on
Information Technology and Computer Science (ITCS2009),
2009, pp. 15–18.

[8] L. Yuan, P. R. Pari, and G. Qu, “Soft ip protection: Watermark-
ing hdl codes,” in Proc. 6th International Information Hiding
Workshop (IHW2004), 2004, pp. 224–238.

[9] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sa-
hai, S. Vadhan, and K. Yangpages, “On the (im)possibility
of software obfuscation,” in Proc. Advances in Cryptology
(CRYPTO2001), Lecture Note in Computer Science, vol.2139,
2001, pp. 1–18.

[10] G. C. Gannod and B. H. C. Cheng, “Using informal and formal
techniques for the reverse engineering of c programs,” in Proc.
IEEE International Conference on Software Maintenance 1996
(ICSM’96), 1996, pp. 265–275.

[11] C. Collberg and C. Thomborson, “Watermarking, tamperproof-
ing, and obfuscation — tools for software protection,” IEEE
Transactions on Software Maintenance, vol. 28, no. 8, pp. 735–
746, 2002.

[12] J. T. Chan and W. Yang, “Advanced obfuscation techniques for
java bytecode,” Journal of Systems and Software, vol. 71, no.
1–2, pp. 1–10, 2004.

[13] M. Sosonkin, G. Naumovich, and N. D. Memon, “Obfuscation of
design intent in object-oriented applications,” in Proc. 3rd ACM
workshop on Digital rights management (DRM2003), 2003, pp.
142–153.

[14] C. Wang, J. Hill, J. Knight, and J. Davidson, “Software tamper
resistance: obfuscating staticanalysis of programs,” in Tech. rep.
SC-2000-12, Dept. of Computer Science, University of Virginia,
2000.

counter:process (clock);

begin

count <= "0";

if (clock’event and clock = "1") then

count <= count + 1;

end if;

end process;

Fig. 2. Original VHDL code

[15] Y. Sakabe, M. Soshi, and A. Miyaji, “Java obfuscation with a
theoretical basis for building secure mobile agents,” in Proc.
7th IFIP TC-6 TC-11 Conference on Communications and
Multimedia Security (CMS2003), Lecture Note in Computer
Science vol.2828, 2003, pp. 89–103.

[16] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of
obfuscating transformations,” in Tech. rep. 148, Dept. of Com-
puter Science, University of Auckland, 1997.

[17] K. Fukushima, S. Kiyomoto, and T. Tanaka, “Obfuscation
scheme using exclusive-or encoding,” in Proc. of 7th In-
ternational Workshop on Information Security Applications
(WISA2006), 2006, pp. 453–467.

[18] M. Brzozowski and V. N. Yarmolik, “Obfuscation as a intel-
lectual protection in VHDL language,” in Proc. of 6th Interna-
tional Conference on Computer Information Systems and Indus-
trial Management Applications (CISIM’07), 2007, pp. 337–340.

[19] R. Stern, P. Maciaszek, A. G. Michael Hsia, and R. Karri,
“Digital logic obfuscation techniques to thwart cloning of asics,”
http://isis.poly.edu/csaw/winners/research/RichardStern.pdf.

[20] SEMANTIC DESIGNS, INC., “VHDL Source Code
Obfuscator,” http://www.semdesigns.com/Products/
Obfuscators/VHDLObfuscator.html.

[21] S. Haber and W. S. Stornetta, “How to time-stamp a digital
document,” Journal of Cryptology, vol. 3, no. 2, pp. 99–111,
1991.

[22] National Institute of Standards and Technology, “AES key
wrap specification,” http://csrc.nist.gov/groups/ST/toolkit/
documents/kms/key-wrap.pdf, 2001.

[23] RSA Laboratories, “PKCS#1 v2.1: RSA Cryptography Stan-
dard,” ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.
pdf, 2002.

[24] M. Bellare and P. Rogaway, “Optimal asymmetric encryption,”
in Proc. of EUROCRYPT’94, Lecture Note Computer Science
950, 1995, pp. 92–111.

[25] H. Berghel, “Watermarking cyberspace,” Communications of
ACM, vol. 40, no. 11, pp. 19–24, 1997.

[26] S. Craver, N. Memon, B. Yeo, and M. Yeung, “Resolving rightful
ownerships with invisible watermarking techniques: Limitations,
attacks, and implications,” IEEE Journal on Seleclted Areas in
Communications, vol. 16, no. 4, pp. 573–586, 1998.

[27] C. Collberg, “Csc 620 security through obscurity. course notes.”
http://www.cs.arizona.edu/~collberg/Teaching/620/2002/
Handouts/Handout-13.pdf, 2002.

[28] zynamics.com, “zynamics BinDiff,” http://www.zynamics.com/
bindiff.html.

Appendix

We provide the watermarked VHDL code using our
proposed mechanism based on a software obfuscation tech-
nique. The original code for an 8-bit counter is presented
in Figure 2. A watermark is naively embedded in variable
dummy in Figure 3. However, the value of this variable is
not used. Thus, an illegal user may know that this variable
is included only to embed a watermark. Figure 4 shows the
obfuscated code where the variables dummy and counter

are encoded in D and C. These variables are encoded

169 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

counter:process (clock);

begin

– dummy variable –

dummy <= ”10010010”;

count <= ”0”;

if (clock’event and clock = "1") then

count <= count + 1;

end if;

end process;

Fig. 3. Watermark embedded in dummy variable

counter:process (clock);

begin

D <= "10111101";

C <= "10110100";

if (clock’event and clock = "1") then

C <= D xor ((D xor C xor "10011011") + 1)

xor "10011011";

D <= D xor C xor "00101111";

end if;

end process;

Fig. 4. Obfuscated VHDL code

according to the rule:
(

D

C

)

=

(

0 1
1 1

) (

dummy

counter

)

⊕

(

00101111
10110100

)

.

The value of the variable dummy is mixed with that of
the existing variable counter. A malicious user would
have difficulty in ascertaining that the code contains a
redundant variable since the values of both D and C are
used to calculate the next value.

170 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

