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Abstract—Network security protocols need high configuration 

workload. We propose a new protocol to reduce this issue: our 

“Security Capabilities Over Unsecured Topology” (SCOUT) 

protocol has been designed to search at each IP-based node for 

the security supported mechanisms on the remote nodes and then 

to invoke an adequate security channel establishment 

mechanism. If the remote node does not support any compatible 

security features, the SCOUT protocol will try to secure the flow 

at least up the router in the neighborhood of the node. This 

protocol avoids the administrator manually managing a tunnel 

for each couple of nodes. This reduces administrator workload 

and increases network security deployment scalability. We 

complete the SCOUT protocol presentation by an evaluation of 

experimental performance and an analysis of vulnerability. 
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I. INTRODUCTION

Security mechanisms are growing in usage in computer 
networks. The first reason comes from technical resource 
improvements: new processors are faster, memory capacities 
are growing everyday, powerful materials enable network 
throughput to be higher and higher… Security breaches are the 
second reason: whereas several years ago, network attacks 
were only broadcast in closed network security communities, 
nowadays they are often publicized in the media. 

Nevertheless, security protocols are increasing in safety, 
security and efficiency. For instance, since its first version in 
1995, the Secure Shell protocol (SSH [1]) has evolved until its 
current version and currently supports most new security 
algorithms. Another example is the Internet Protocol Security 
(IPsec [2]). The IPv6 standard requires this framework for 
security of IPv6 compliant systems. IPsec defines two modes 
of working, the tunnel and the transport mode. It is linked to 
dedicated protocols for establishing secure communication 
channels, such as the Internet Key Exchange (IKE [3]) 
protocol. Other protocols secure the data, such as the 
Encapsulating Security Payload (ESP [4]) and Authentication 
Header (AH [5]) protocols. 

These protocols need high configuration workload and this 
is a restraint for deployment of security solutions. IPsec 
security requires configuring both end-systems with most 
information for each communication channel to secure. This 
can be complex for some network topologies. This creates a 
greater workload for network administrators. 

We propose a new protocol to reduce this issue: our 
“Security Capabilities Over Unsecured Topology” (SCOUT) 
protocol has been designed to search at each IP-based node for 
the security supported mechanisms on the remote nodes and 
then to invoke an adequate security channel establishment 
mechanism. If the remote node does not support any 
compatible security features, the SCOUT protocol will try to 
secure the flow at least up the router in the neighborhood of the 
node. This protocol avoids the administrator manually 
managing a tunnel for each couple of nodes. This reduces 
administrator workload and increases network security 
deployment scalability. 

A. Several security establishment protocols 

Before securing the data, security mechanisms require the 
secure channel to be established. This establishment may be a 
part of the mechanism, such as for the Point-to-Point Tunneling 
Protocol (PPTP [6]) which uses a control channel over TCP to 
manage a Generic Routing Encapsulation (GRE [7]) tunnel 
encapsulating PPP packets. The Extensible Authentication 
Protocol (EAP [8]) is an authentication framework frequently 
used in wireless networks. It provides some methods to 
negotiate secure channels. The EAP-IKEv2 [9] is an extension 
from EAP based on the model of IKEv2, presented below. 

Other frameworks are composed of a set of protocols with a 
subset dedicated to secure channel establishment. IPsec is an 
example of such frameworks. It uses Internet Security 
Association and Key Management Protocol [10] (ISAKMP) to 
manage the different channels on the network node. These 
channels can be established through the Internet Key Exchange 
(IKE) protocol or its successor the IKEv2 [11, 12] The ticket-
based Kerberized Internet Negotiation of Keys (KINK [13]) is 
an alternative to the IKE protocols, centralized around 
Kerberos [14] servers to manage authenticity tickets. These 
establishment protocols require an external invocation to 
establish secure channels, as presented Fig 1. 

Figure 1. Invocation, establishment then securing 

IKE, IKEv2 and KINK protocols assume that a network 
administrator has configured the secure channels prior to using 
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them to securely exchange data. The SCOUT protocol we 
propose automates the configuration step, reducing network 
administrator workload. The Opportunistic Encryption (OE 
[15]) extension of the OpenSwan [16] and StrongSwan [17] 
IPsec implementations for Linux kernel provides secure 
communications on the fly, like SCOUT. Contrary to our 
SCOUT protocol, OE has been defined for IPv4 networks only; 
OE depends on a third party, which manages a DNS or 
DNSSEC [18] server with the pre-loaded keys; it does not 
enable data flows to be secured by intermediary routers and it 
is not compatible with different establishment protocols to be 
used on the same node. 

II. SCOUT AND SCOUT6 IN DETAIL

A. The generic SCOUT protocol 

The SCOUT protocol provides four different working 
modes, depending on SCOUT support on the network nodes. 
Fig. 2 illustrates a basic topology with two end-systems H1 and 
H2, linked through two routers R1 and R2. 

Figure 2. Basic network topology with 2 hosts and 2 routers 

If both hosts H1 and H2 support SCOUT, then a secure 
channel can be established between H1 and H2, this is the 
Host-Host SCOUT mode. When H1 sends a first packet to H2, 
the SCOUT daemon of H1 intercepts the packet, communicates 
with the SCOUT daemon of H2 and a secure channel is 
established between H1 and H2. After that, all packets from H1 
to H2 or in the reverse direction from H2 to H1 are forwarded 
through this secure channel. 

If host H1 and router R2 support SCOUT, but H2 does not, 
then a secure channel can be established between H1 and R2, 
this is the Host-Router SCOUT mode. When H1 sends its first 
packet to H2, the H1’s SCOUT daemon tries to communicate 
with H2 which refuses the communication (H2 does not 
support SCOUT). Then H1’s daemon tries to communicate 
with “the router in the neighborhood of H2” (the first router 
forwarding the packets sent by H2) and R2 responds to this 
request. A secure channel between H1 and R2 is established as 
in the Host-Host SCOUT Mode. 

If the first packet sender does not support SCOUT but the 
router in the neighborhood does, then the SCOUT protocol can 
provide security on the packet forwarding path. In our example 
fig. 2, if H1 does not support SCOUT and R1 supports it, then 
R1 can take the place of the end-system to secure data. In this 
case, if H2 supports SCOUT, then R1 establishes a secure 
channel between itself and H2, this is the Router-Host SCOUT 
mode. If H2 does not support SCOUT but R2 supports it, then 
the secure tunnel is established between R1 and R2; all the data 
exchanged between H1 and H2 are then secure between the 
neighboring routers R1 and R2, this is the Router-Router mode. 
Table 1 resumes the four secure cases. 

TABLE I. SCOUT MODES AND SECURE SECTIONS

Link SCOUT Mode 

H1-R1 R1-R2 R2-H2 

Host-Host (H-H)  secure  secure  secure 

Host-Router (H-R)  secure  secure  unsecured 

Router-Host (R-H)  unsecured  secure  secure 

Router-Router  unsecured  secure  unsecured 

In the four different modes, the data between routers R1 
and R2 are secure. The SCOUT protocol has been elaborated to 
enable not exclusively the hosts but also the routers to provide 
the data security, in order to reduce the load of SCOUT 
deployment. SCOUT needs indeed to install and configure a 
daemon; limiting the deployment to the routers provides a 
sufficient level of security for some topologies without 
requiring deployment of SCOUT on all end-systems. This 
enables the network administrators to secure data for systems 
incompatible with SCOUT, for example the systems running 
exotic operating systems or systems with low hardware 
resources.

If only one node supports SCOUT, then the data cannot be 
secure. The default behavior of the SCOUT node is to drop the 
“secure-unable” packet. Matrix 1 resumes all the cases which 
can happen for the topology represented in fig. 2. In this 
matrix, the node names are preceded by an exclamation mark 
(“!”) if they do not support SCOUT, otherwise they support the 
protocol. For example, the column “H1 and !R1” corresponds 
to the cases where node H1 supports the SCOUT protocol and 
router R1 does not support it. 

TABLE II. OVERVIEW OF ALL POSSIBLE SECURITY CONFIGURATIONS

 H1 and R1 H1 and !R1 !H1 and R1 !H1 and 

!R1 

H2 and R2 H-H

between H1 

and H2 

H-H

between H1 

and H2 

R-H

between R1 

and H2 

Drop 

H2 and !R2 H-H

between H1 

and H2 

H-H

between H1 

and H2 

R-H

between R1 

and H2 

Drop 

!H2 and R2 H-R

between R2 

and H2 

H-R

between R2 

and H2 

R-R

between R1 

and R2 

Drop 

!H2 and 

!R2 

Drop Drop Drop 

To summarize, data are secure at least between the 
neighboring routers or data are dropped before being sent 
unsecured on the network. If the end-systems support SCOUT, 
they secure the data. If not, if the nearest routers support 
SCOUT, they do the work instead. If no system supports 
SCOUT, the data cannot be secure and are dropped. 

1) SCOUT prerequisites 
To allow the SCOUT protocol to secure the data, it requires 

several properties. Firstly, the link between the nodes and their 
nearest routers must be secure: the Router-Router SCOUT 
mode is acceptable if and only if the local networks are secure. 
Without security of the link between the node and the router, 
the data may be discovered by an attacker. 

Secondly, SCOUT requires another protocol “P” to 
establish a secure communication channel: the SCOUT 
daemon on the local node finds out the security capabilities of 
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the remote node, then invokes other programs to create a 
secure channel and reconfigure the operating system routing 
tables to forward packets through the secure channel. 

Thirdly, SCOUT trusts the other protocol “P” to 
authenticate the remote node: SCOUT identifies the remote 
node and transmits the information to the “P” protocol. That 
enables SCOUT to have a low security overhead and avoids 
performing multiple times the same authenticity verification. 

B. SCOUT in service 

1) SCOUT algorithm 
The SCOUT protocol algorithm can be summarized as 

following. We call “initiator” the first packet sender end-
system which supports SCOUT or else the first router which 
forwards the packet and supports SCOUT. We call “destination 
node” the end-system to which the packet is sent and 
“destination router” the last router which forwards the packet. 
An “IP-flow” designates all packets with the same source and 
destination addresses, in both directions (sending and 
receiving).

The first packet of any IP-flow triggers the process for the 
IP-flow. All following packets of the same IP-flow are 
forwarded through the secure channel (if the channel has been 
successfully established) or are dropped (if no channel has been 
created). When the first packet goes through the initiator, it is 
delayed and the initiator starts the first step, sending a request 
to the destination node for security capabilities. 

If the destination node supports SCOUT, it responds 
positively with its capabilities to the initiator, then the initiator 
invokes secure channel establishment, modifies the routing 
table and SCOUT has completed its task. 

If the destination node does not support SCOUT, depending 
on the implementation of the node and on the configuration of 
firewalls in the network, it can respond by sending an error 
message or can ignore it and send back no response. In the 
second case, the initiator tries again to contact the destination 
node several times (arbitrarily three times for our experiments) 
before starting the second step. In the first case, the initiator 
starts the second step as soon as the destination node error 
response is received. 

In the second step, the initiator tries to contact the 
destination router. If the router response is positive then the 
initiator invokes the secure channel, as in the first step. If the 
router response is negative, then the initiator cannot assure data 
security and indicates to the operating system to drop the IP-
flow. If there is no response from the destination router, then 
the initiator tries again several times before considering the 
absence of response as negative. Fig. 3 below resumes the 
SCOUT algorithm. 

The SCOUT protocol uses the IP source and destination 
addresses to decide about the security of the data. If the 
administrator has nodes with different network interfaces and 
different security needs and if he wants to have at the same 
time secure and unsecured data on the same link, it is possible 
to bind the SCOUT program to certain IP addresses but not all. 
Operating systems usually accept that administrators define 
different IP addresses for the same network interface, enabling 

them to have one address for data requiring security and 
another one for data without security requirement. 

Figure 3. SCOUT algorithm in a diagram 

2) Node behaviour for SCOUT packets 
There are four different types of nodes interacting with 

SCOUT packets: initiator end-systems (like H1 in fig. 2), 
initiator routers (like R1), destination routers (like R2) and 
destination end-systems (like H2). 

On the initiator end-systems, the SCOUT daemon must 
intercept outgoing packets to trigger the SCOUT algorithm 
presented in the previous section. On the initiator routers, it 
must intercept packets from the directly-linked end-system 
during their forwarding. In both cases, if no secure channel 
already exists and if security is required, the SCOUT daemon 
is triggered. 

On the destination end-systems, the SCOUT daemon must 
receive incoming requests and respond in consequence to the 
sender. On the destination routers, the SCOUT daemon must 
intercept the packets sent to directly-linked end-systems during 
their forwarding and respond to the sender. 

Details on the contents of the requests and the responses 
and how the protocol differentiates the packets for destination 
nodes from the ones for destination routers are explained in the 
next section describing how the generic SCOUT protocol is 
instantiated with the IPv6 protocol. 

C. SCOUT with IPv6: SCOUT6 

The SCOUT protocol designates the main guidelines to 
enable initiator nodes first to discover destination node security 
capabilities and second to invoke secure channel creation 
between the initiator and the destination. This section will give 
information to concretely merge the SCOUT specifications 
with the Internet Protocol version 6 (IPv6). The design of the 
SCOUT protocol instantiated to the IPv6 protocol will be 
called “SCOUT6”. Thus, the generic part is designated by the 
name “SCOUT” while “SCOUT6” designates the 
implementation-specific part for IPv6. 

Conforming to the RfC 4294[19], IPv6 nodes must support 
IPsec. The protocol most used to establish an IPsec secure 
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channel is currently the IKEv2 protocol. This is why SCOUT6 
with IKEv2 should be chosen over other protocols, but a 
SCOUT6 daemon configuration may select another protocol if 
the administrator so wants. 

D. SCOUT6 in detail 

The IPv6 protocol enables packets to transport data plus 
additional information in “extension headers”. These optional 
headers are managed at the operating system level and, 
depending on the information, may influence the kernel or 
intermediate network layers for packet management. The 
SCOUT6 design uses two IPv6 extension headers described in 
detail later: the Destination Option and the Hop-by-Hop option. 
These extensions make it possible to extend the IPv6 protocol 
with SCOUT6 support and to maintain compatibility with the 
noncompliant SCOUT6 nodes. 

With SCOUT6, we need to exchange three kinds of 
information: one for the initiator node to ask about the 
destination end-system security capability, one for the initiator 
to ask about the destination router capability and one for the 
destination nodes to respond to the initiator. 

1) Destination Option Query (DOq) 
The IPv6 Destination Option (DO) enables the SCOUT6 

protocol to contact the destination end-system SCOUT daemon 
and ask for security capabilities. IPv6 requirements specify that 
this option must be examined only by the packet destination 
system. It contains the type of the next IPv6 packet, the length 
of the extension header and at least six bytes of specific TLV-
coded data. The Type-Length-Value (TLV) contains a byte for 
the type, orienting the operating system packet management 
(see table 3 for more details). 

SCOUT6 initiator sends to the destination end-system an 
IPv6 packet query named “DOq”. This packet is illustrated by 
fig. 4. It contains a Destination Option extension header with a 
type of 196 and a data length of 4 bytes. The DO data value is 
not significant for DOq, it is some padding data to align the 
IPv6 total packet length to a multiple of 8. 

TABLE III. TYPE IDENTIFIER ACTIONS FOR PROCESSING IPV6 NODES,
FROM THE RFC 2460[20] 

highest-order 2 bits of 

the DO type identifier 

Type range Operating System default 

behaviour

00 0..63 Ignore the packet 

01 64..127 Drop the packet 

10 128..191 Send an ICMP Parameter Problem 

to the sender 

11 192..255 If the sender IPv6 address is not a 

multicast address, then send an 

ICMP Parameter Problem to the 

sender, else drop the packet 

The experimental type 196 is not yet assigned by the IANA 
[21] and the value may change in the future. A value of 196 as 
type of DO enables the destination end-system operating 
system to decide what to do with this packet. If the destination 
node supports SCOUT6, the daemon intercepts the DOq and 
sends a DOr packet as described below. If it does not support 
SCOUT6, then the operating system sends an ICMP error to 
the initiator which consequently knows that the destination 
end-system does not support SCOUT6. 

Figure 4. IPv6 packet format with the Destination Option Query 

2) Router Alert Query (RAq) 
In the case that the initiator does not have any response to 

several DOq sent or if it receives an ICMP Parameter Problem 
on its DOq extension, then it sends out, to the destination 
router, other packets called “Router Alert queries” (RAq). In 
the same way as with the Destination Option, the IPv6 Hop-by-
Hop extension enables a packet sender to ask each intermediate 
router to analyze the packet data. The Router Alert option[22] 
uses this extension with a specific TLV-type code; the TLV-
value code can specify a subtype. SCOUT6 uses the Router 
Alert option with an experimental and IANA-unassigned value 
of 42 to indicate “Router Alert Query”. This RAq is for the 
SCOUT6 daemon on the destination router. 

The initiator sends a “RAq” packet, containing this Router 
Alert extension, to the destination end-system. Each router 
forwarding the RAq packet will perform an operation. If the 
operating system does not support SCOUT6, the packet is 
forwarded and the extension is ignored. If the operating system 
supports SCOUT6 but the router is an intermediate router and 
not the destination router, the packet is forwarded. If the router 
supports SCOUT6 and is the destination router, it intercepts the 
packet and sends a DOr packet as described below. If the final 
router does not support SCOUT6, then the packet is received 
by the destination end-system and ignored (it does not contain 
other data). 

3) Destination Option Response (DOr) 
If a SCOUT6 daemon on a destination node (router or end-

system) receives a query from the initiator, then the destination 
node sends back a response. To do so, it sends an IPv6 packet 
called Destination Option Response (DOr) with a destination 
option of type 66, as represented in fig. 5. The experimental 
type 66 informs the receiver to drop the packet if it does not 
know what to do with it. The DOr value field contains a 32-bit 
binary mask of supported protocols: a “1” bit means the 
destination node supports a specific security protocol, 
depending on the position of the bit in the mask. Currently, the 
Least Significant Bit is assigned to the IKEv1 protocol, the 
next bit is for the IKEv2 protocol, the third bit is for the KINK 
protocol and the Most Significant Bit is for experimental 
usage; all other bits are reserved for future protocol support. 
The DOr packet is completed with 16 bytes of data filled with 
the destination address of the DOq packet. 

Figure 5. Destination Option Response TLV-data values 
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This data enables the initiator to identify which IP-flow is 
allocated to the DOr. The DOr packet source address is the 
address of the destination node (router or end-system) 
accepting the security. The DOr packet destination address is 
the address of the initiator. The DOr packet Destination Option 
data is the destination end-system address, used to identify the 
allocated IP-flow and to know which DOq or RAq has 
generated the DOr. 

If a destination end-system sends back a DOr, then the DOr 
packet source address has the same 16 bytes as the DOr 
Destination Option data value. If a destination router sends 
back a DOr, the DOr packet source is not the DOr Destination 
Option data value. Thus the initiator knows that the security 
will be assured by the destination router and not the destination 
end-system. The initiator also knows which destination node to 
contact in order to establish a secure channel. 

In the case that there is already an existing secure channel 
between both ends, the SCOUT6 daemon does not invoke 
another channel but reuses the existing one to save resources; 
the daemon just adds a new route for the IP-flow through the 
secure channel. 

E. Concrete examples 

1) Host-Host security 
Fig. 6 illustrates a typical usage of the SCOUT6 protocol. 

In this scenario, both end-systems support SCOUT6. When the 
first host H10 sends its first packet to H21, the H10 SCOUT6 
daemon delays the packet and sends a query (DOq) to H21. In 
response, the H21 host sends a DOr containing its IPv6 address 
to H10. Then H10 initiates a secure communication channel 
with H21, reroutes all packets for H21 through this tunnel and 
releases the delayed first packet. On the other host H21, the 
channel establishment is followed by a rerouting of packets for 
H10 through the secure channel. All following communication 
between H10 and H21 will be secure. 

Figure 6. Host-Host SCOUT mode 

2) Router-Router security 
In the previous scenario, we do not care if the routers 

support or not the SCOUT6 protocol, because the end-systems 
do and manage the security. Fig. 7 presents the next scenario 
and illustrates the opposite case where no end-system supports 
SCOUT6 but both nearest routers do. 

In this scenario, when H11 sends its first packet for H22, its 
nearest router R1 intercepts and delays the packet during the 
forwarding and send a query (DOq) instead. H22 does not 
support the SCOUT6 protocol. Conforming to IPv6 
specification, the H22 operating system responds to R1 by 
sending an ICMP Parameter Problem packet. 

Figure 7. Host-Host SCOUT mode 

Then R1 knows H22 cannot assume the security and tries to 
contact the destination router by sending a query through a 
router alert message (RAq). Intermediate routers forward this 
packet, ignoring the RAq information: they do not support 
SCOUT6 or are not the router nearest H22. The destination 
router R2 supports SCOUT6 and is the router nearest H22 thus 
R2 processes this packet RAq: it sends R1 a response (DOr) 
containing the original destination of the RAq (=H22’s IPv6 
address). When R1 receives the DOr packet from R2, it 
invokes a secure channel between R1 and R2 and inserts routes 
from R1 for R2 and H22 through the secure channel. 

After having successfully established a tunnel between R1 
and R2, if another host connected to R1 sends unsecured 
packets to any un-supporting SCOUT6 host connected to R2, 
the R1 daemon will reuse the secure channel; it just inserts new 
routes and does not re-invoke a potentially large number of 
channels between R1 and R2: a single channel multiplexes all 
unsecured IP-flows between R1 and R2. 

3) Scenarios overview 
Table 4 below summarizes the different scenarios which 

can take place with SCOUT6. The topology used to establish 
the table is shown in fig. 8, where a star “*” means “SCOUT6 
supporting node”, all other nodes do not support SCOUT6. In 
the table, the “path” column indicates the security of each 
segment: a minus (“-“) is an unsecured segment and an equal 
(“=”) is secure. 

The scenarios of table 4 are in chronological order. In 
scenario 2, a secure channel has been established from H*10 to 
R*2 in order to secure the IP-flows between H*10 and H22. 
This secure channel is reused in the next scenario 3 to secure 
the IP-flows between H*10 and H23. 

Figure 8. Example of extended topology 
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TABLE IV. SCOUT6 SCENARIOS OVERVIEW

 Path SCOUT Mode used by 

SCOUT6

1 H*10 = H*21 

(H*10 =R1=R2 = H*21) 

Host-Host DOq, DOr 

2 H*10 = R*2 – H22 

(H*10 =R1=R*2 – H22) 

Host-Router DOq, RAq, DOr 

3

(after 2) 

H*10 = R*2 – H23 

(H*10 =R1=R*2 – H23) 

Host-Router, 

channel reusing 

DOq, RAq, DOr 

4 H11 – R*1 = H*21 

(H11 – R1 = R2 = H21) 

Router-Host DOq, DOr 

5

(after 4) 

H12 – R*1 = H*21 

(H12 – R1 = R2 = H21) 

Router-Host, 

channel reusing 

-

6 H12 – R*1 = R*2 - H22 

(H12 – R1 = R2 = H22) 

Router-Router DOq, RAq, DOr 

7

(after 6) 

H12 – R*1 = R*2 - H23 

(H12 – R1 = R2 = H23) 

Router-Router, 

channel reusing 

DOq, RAq, DOr 

III. SCOUT6 IN PRACTICE

A. Application of SCOUT 6 to a peer-to-peer network 

Peer-to-peer topologies are network distributions without 
central nodes to control and distribute the tasks; in a peer-to-
peer network, all nodes are equally privileged. Internet was 
initially adherent to the peer-to-peer approach through the 
Arpanet project but its growing usage of the web converted it 
year by year into a mainly centralized network around several 
mainframes and powerful servers. Nevertheless some peer-to-
peer protocols continue to support the Internet. For example, 
the Border Gateway Protocol (BGP[23]) backs the core routing 
decisions on the Internet; its behavior is based on messages 
between adjacent peers to exchange mainly IP network 
prefixes.

The BGP protocol was originally designed with little 
consideration for protection of the information it carries and 
thus there is no mechanism internal to BGP that protects this 
protocol. RfC 4272[24] is a BGP security vulnerability analysis 
enumerating some attacks against BGP. The SCOUT6 protocol 
we propose may provide automatically established secure 
channels for a peer-to-peer network, such as the one running 
BGP. The Secure Border Gateway Protocol (Secure-BGP [25]) 
uses IPsec features to secure BGP messages and thus improve 
BGP message security, but lets IPsec configuration information 
to be defined by the administrators. SCOUT6 can automate 
configuration item definition. 

Without SCOUT, in a peer-to-peer network with n equal 
and connected nodes, each node may communicate with up to 
(n-1) adjacent nodes. In the worst case, we have then n(n-1)/2
secure duplex channel to establish. Without SCOUT, the 
administrator overhead is important: they have to configure 
n(n-1) channel ends. 

With SCOUT, administrators must install and configure the 
daemon on each node. They need not configure it with all 
remote possible nodes to secure. Therefore, the installation 
must be repeated only n times and not n(n-1) anymore. Fig. 9 
describes the cost in lines of configuration in function of the 
number of nodes. We estimated we need 9 lines of 
configuration per channel per node. 

Figure 9. Configuration cost depending on the number of nodes 

Moreover, only the useful channels are established: if two 
nodes communicate together, then SCOUT invokes a channel 
between them to secure the messages; if two nodes never 
communicate, then SCOUT never invokes the channel, thus 
some computer and network resources are saved. 

B. SCOUT6 overhead for network delay and capacity 

To discover the security capabilities of the different nodes, 
the SCOUT protocol needs to exchange messages on the 
unsecured network. The SCOUT6 implementation, based on 
IPv6 packets, uses the DOq, RAq and DOr messages explained 
in the previous section. Packet lengths are respectively equal to 
48, 48 and 64 bytes. In the best case, there is only one DOq and 
one DOr packet exchanged on the network, thus 96 bytes in 
two packets. In the worst case, there are three DOq plus three 
RAq plus three DOr, thus nine packets containing a total of 480 
bytes. 

To experiment the SCOUT6 protocol, we elaborated a 
topology with 4 groups of nodes representing major Internet 
Service Providers (ISP) in France: Orange, Bouygues Telecom, 
Sfr and Free major companies. Each group has assigned to it an 
additional delay of transmission, measured with the commands 
traceroute and ping to their main web server from our 
laboratory. We are connected through a fifth ISP called 
RENATER. Fig. 10 describes the average delays and the jitter 
we have measured on December 2011, the 6th at 11 AM and 
the experimental topology we use to validate our SCOUT6 
implementation. Each group is associated to a set of 256 IPv6 
addresses. To emulate this experimental network, we used 
VirtualBox[26] with 4 Virtual Machines (VM with a mono-
core processor and 256 MB of RAM) with Debian and a 
SCOUT6 daemon, linked with a pseudo-Ethernet and 
configured with delays and jitter for outgoing packets through 
the Linux netem[27] kernel module (“Network Emulation”) 
and the program Traffic Control (TC[28]). On each VM, a 
script tries to ping other VM from random addresses to other 
ones, the ping simulates data connections. 

Figure 10. Average delays and jitters for 4 ISPs 
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Figure 11. Average delays and jitters for 4 ISPs 

The ping request triggers the SCOUT6 daemons and 
conducts to establish secure tunnels to exchange securely the 
ping data. The SCOUT6 daemon has been instrumented to 
measure, for each secure channel, the delays between the time 
of the first packet to secure and the time of the channel 
invocation. Fig. 11 resumes the measured delays in function of 
the load of the VM (the load is quantified in number of 
established channels). 

We can observe an average delay of 85 milliseconds (ms) 
for the total delay between the packet interception and the 
channel invocation. During this SCOUT6 discovery stage, the 
daemon sent a DOq and received the corresponding DOr. 
Measures are globally constant over the time while an 
increasing number of tunnels were established. At the end of 
the experiment, up to 228 tunnels has been established and can 
be used to transmit securely the data between the peers. 

The experimental duration average of the SCOUT6 
implementation proceeding is 5 ms (measures are mostly 
between 1 and 10 ms). Sending one packet for the DOq plus 
one other for the DOr spends about 40 ms in each case. Several 
measures are around this Round-Trip Time (RTT) of 40 ms, 
but most of them are twice. The 80 ms observed are due to an 
additional RTT for the Neighbour Discovery Protocol (NDP) 
which resolves the IPv6 global addresses over the link layer of 
the Internet. In our experiments, the channels need several 
seconds to be established, about 50 times more than the whole 
duration of the SCOUT6 discovery stage. 

C. Complexity of common operations 

To evaluate SCOUT6 benefits, we propose an overview of 
the costs (in terms of modified lines of configuration) on a 
centralized network topology (e.g. the traditional use case for 
network management). We will examine common operations 
such as adding and removing clients and servers. In a 
centralized network, we suppose the secure channels are 
established only between one server and one client. Two clients 
or two servers cannot be directly connected. Moreover, it is 
only the clients who initiate channel establishments; the servers 
do not contact clients to create secure channels. Let’s assume a 
star topology with N clients and 1 server. 

TABLE V. OVERVIEW OF COSTS FOR COMMON OPERATIONS

 Without SCOUT With SCOUT 

Adding a 

client (N+1) 

Configure this (N+1)th client 

and configure the server 

[O(2)] 

Install SCOUT6 on the client 

[O(1)] 

Modifying the 

security data 

for the client 

N or 

removing the 

client N 

Reconfigure both ends: the 

client N and the server [O(2)] 

Reconfigure the client N and, 

depending on the security 

protocols, server may 

invalidate its security caches 

[O(2)] 

Adding a new 

server

On the new server, configure 

one tunnel per potential 

client and on each client, 

configure a channel with the 

new server [O(2*N)] 

Install SCOUT6 on the 

server [O(1)] 

Removing a 

server

Reconfigure each client 

[O(N)] 

Nothing to do [O(0)] 

IV. CONSIDERATIONS OF SECURITY IN SCOUT6 

A. SCOUT6-related attacks 

SCOUT6 has been designed to search for node security 
capabilities and to invoke, if possible, secure channel 
establishment between the nodes. Security is enforced by the 
establishment protocol invoked by SCOUT6, but does our 
protocol introduces some new vulnerabilities? We propose to 
give some elements of response to this question in this section. 
We would assume here that the “P” establishment protocol 
invoked by SCOUT6 is the IKEv2 protocol.

1) Packet injection 
Injection of valid packets into the system by another system 

not participating in the normal process is a common attack 
called “packet injection”. In the case of SCOUT6, 3 types of 
packets can be injected: DOq, RAq and DOr packets. These 
packets can be sent to SCOUT6 compliant systems or else to 
IPv6 compliant system without SCOUT6 support. Table 6 
summarizes the different types of injection and the impacts. 

Injecting a DOq or a RAq to a SCOUT6 compliant system 
leads this system to respond with a DOr packet, thus to add a 
light overhead on the network (64 bytes are sent). If the nearest 
router supports SCOUT6 protocol, injection of RAq may lead 
the attacker to find the nearest router address. Injecting a DOr 
to a SCOUT6 compliant system does nothing: the receiving 
system has not sent any associated DOq or RAq in the past and 
will therefore ignore this orphan DOr packet (a non-orphan 
DOr is the response to a previous DOq or RAq query, an 
orphan DOr has no DOq nor RAq associated). Injecting a DOq 
to a SCOUT6 non-compliant system may be ignored by the 
receiving system or may generate an ICMPv6 Parameter 
Problem packet. This case is considered as a normal case and 
used to trigger the RAq sending step without waiting until the 3 
DOq are sent. Injecting a RAq or a DOr packet to an IPv6 
compliant system which does not support SCOUT6 has no 
effect: conforming to the RfCs[20], packets with these kinds of 
unknown options are dropped by the operating system. 

Note that a SCOUT6 non-compliant system which receives 
a DOr can, in normal conditions, be considered as probably 
attacked. DOr packets can only be sent in response to a DOq or 
a RAq, and these packets are normally only sent by SCOUT6 
compliant systems! 
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TABLE VI. PACKET INJECTION AGAINST SCOUT6 

Type Sent to a SCOUT6 

compliant system 

Sent to a SCOUT6 

non-compliant system 

DOq A DOr is sent back in 

response 

An ICMPv6 Parameter 

Problem is sent back in 

response 

RAq A DOr is sent back in 

response, containing 

the router address 

Ignored by the receiver 

DOr Ignored (viewed as an 

orphan DOr) 

Ignored by the receiver 

2) Replayed packets 
An attacker may listen to the SCOUT6 messages, intercept 

some of the packets and inject them again into the network to 
destabilize nodes. But in SCOUT6 design, the replay is already 
implemented to compensate the risk of packet loss because 
IPv6 does not guarantee reliability. The DOq and RAq queries, 
without responses, are sent again another two times before 
being considered negative. A system may then receive multiple 
times the same DOq or RAq; it will just send again an 
associated DOr. 

The DOr contains IP source and destination addresses for 
the IP-flow to secure. The SCOUT6 implementation uses this 
information that enables the initiator to identify which IP-flow 
to secure and to know both ends in order to establish a secure 
channel between them. When the DOr is received, the 
SCOUT6 implementation checks first that the DOr is not an 
orphan DOr. Then the SCOUT6 daemon invokes secure 
channel establishment and updates its cache to ignore future 
similar DOr: the daemon deletes the associated pending DOq 
or pending RAq entry from the “list for search in progress”. A 
“list” is required to manage the retries and their timeouts, 
before considering the absence of response as negative. After 
updating this list, any other received DOr are considered 
orphans and therefore ignored: there is no pending DOq or 
RAq anymore which can be associated to the replayed DOr. 

3) Packets stolen, altered and man-in-the-middle 
An attacker may intercept the SCOUT6 messages during 

their forwarding at the middle of the network. It can silently 
drop these packets, preventing the SCOUT6 daemon from 
establishing a secure channel. If the attacker has the capacity to 
drop SCOUT6 packets, then it has the capacity to drop IKEv2 
packets too; it may block SCOUT6 security searching but may 
equally block IKEv2 secure channel establishment. Thus a 
SCOUT6 steal packet protection is useless. 

The attacker may use its capacity of interception to try a 
man-in-the-middle attack. SCOUT is not designed to secure the 
connections itself, but is designed to search for connection 
security solutions. The attacker may intercept and alter 
SCOUT6 packets, causing both legitimate ends to try to 
establish a secure channel between them and the attacker. But 
then the IKEv2 daemon will realize the attempt at 
impersonation and reject channel establishments. 

The attacker could try to alter the DOr data content, i.e. the 
IPv6 address of the destination host. In this case, the altered 
DOr  no longer contains the valid information for the initiator 
to associate this DOr to the DOq or RAq query, thus the altered 
DOr will be considered orphan and therefore ignored. 

4) Spoofing of IP addresses 
An attacker may try to spoof the source address of the 

SCOUT6 packets. If the attacker sends a DOq or RAq with a 
spoofed source address, the packet may be ignored (if the 
destinations are not SCOUT6 compliant) or the DOr will be 
sent to the spoofed node which will ignore it (the spoofed node 
considers this DOr as orphan). If the attacker sends a DOr with 
a fake IP source address, the packet will be discarded: the 
receiving system will ignore it in all cases (orphan DOr for a 
SCOUT6 compliant node, packet to drop for others). 

An attacker may try to spoof the destination address. If the 
packet is a DOq or a RAq, the attacker will receive an ICMP 
error parameter problem (if the spoofed node does not support 
SCOUT6) or a DOr (if it supports SCOUT6) from the spoofed 
destination. If the altered packet is a DOr, this packet will be an 
orphan for the destination host which will manage it. 

5) Denial of Service 
An attacker may use SCOUT6 packets to try a denial-of-

service attack on the victim. SCOUT6 daemons can serve as 
mirroring hosts: when you send them a DOq or RAq, they 
respond with a DOr thus increasing the network load. But 
SCOUT6 packets are small (48 and 64 bytes). Moreover the 
attacker can easily generate IPv6 packets with the same DoS 
effects and with more data to overload a network, just by 
conforming to the IPv6 specifications: IPv6 compliant nodes 
should send an ICMPv6 Parameter Problem packet to the 
emitter when they receive an IPv6 packet with an unknown 
Destination or Hop-by-hop Option. 

A node may be led to accept more secure channels than it 
can manage: if the attacker has a great number of IPv6 
addresses, it can use them to establish 1 channel per address 
and then overload the destination system. This is not really a 
vulnerability of the SCOUT6 protocol but a negative 
consequence of the scalability it provides. This vulnerability 
can be avoided by limiting the maximum number of channels 
the system accepts. If this limitation is not acceptable, the 
vulnerability can be reduced by using efficient algorithms to 
manage the channels and to delete unused channels. 

6) An effective attack against SCOUT6 
An attacker may influence SCOUT6 behavior successfully 

by silently discarding all DOq queries and letting through the 
RAq and DOr messages. If both the destination router and the 
destination host are SCOUT6 compliant, then the initiator will 
establish the secure channel not between itself and the 
destination host but between itself and the destination router. In 
this case, the path between the destination router and the 
destination host is NOT secure despite the fact that it could in 
fact be secure. 

This is why the first hypothesis of SCOUT protocol is that 
“the local networks are secure”. This hypothesis may be 
ignored if the SCOUT daemon is configured to refuse the Host-
Router and Router-Router modes and then it will never send 
any RAq. But this possibility may significantly decrease 
security capabilities. 
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V. CONCLUSION AND FUTURE WORK

We have presented in this paper the new SCOUT protocol 
which automatically discovers the security capabilities of nodes 
on an IP-based network topology. Not only can the SCOUT 
protocol invoke secure channel establishment between end-
systems if both support the protocol, but it can also compensate 
for the absence of SCOUT support on end-systems by enabling 
the nearest routers to provide the security if they support 
SCOUT. Moreover the SCOUT protocol reduces administrator 
configuration workload and increases scalability of network 
security mechanisms. 

The instantiation of the SCOUT protocol with IPv6 
completes the generic SCOUT protocol with a concrete 
protocol named SCOUT6. Our experiments indicate a low 
overhead in terms of exchanged data and additional delays. Our 
paper concludes with a study of the vulnerabilities linked to the 
SCOUT6 protocol. 

Nevertheless we have to conduct further research to find 
solutions to the effective attack against SCOUT6 presented 
above and, if possible, to validate formally these solutions. 
Moreover, we are working on completing the set of 
establishment protocols supported by SCOUT6: currently the 
SCOUT6 protocol experiments are based only on one secure 
channel establishment protocol (IKEv2), whereas SCOUT6 is 
designed to support multiple protocols. Another point we are 
working on concerns secure multicast channels. Current 
SCOUT design is clearly unicast-oriented. In the future, we 
plan to extend the SCOUT protocol to support multicast 
communications. 
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