
Security capability discovery protocol

 over unsecured IP-based topologies

Antoine Varet, Nicolas Larrieu

Ecole Nationale de l'Aviation Civile (ENAC)

TELECOM/ResCo research team

Toulouse, France

antoine.varet@recherche.enac.fr, nicolas.larrieu@enac.fr

Abstract—Network security protocols need high configuration

workload. We propose a new protocol to reduce this issue: our

“Security Capabilities Over Unsecured Topology” (SCOUT)

protocol has been designed to search at each IP-based node for

the security supported mechanisms on the remote nodes and then

to invoke an adequate security channel establishment

mechanism. If the remote node does not support any compatible

security features, the SCOUT protocol will try to secure the flow

at least up the router in the neighborhood of the node. This

protocol avoids the administrator manually managing a tunnel

for each couple of nodes. This reduces administrator workload

and increases network security deployment scalability. We

complete the SCOUT protocol presentation by an evaluation of

experimental performance and an analysis of vulnerability.

Keywords: network security, discovery, protocol, IPv6

I. INTRODUCTION

Security mechanisms are growing in usage in computer
networks. The first reason comes from technical resource
improvements: new processors are faster, memory capacities
are growing everyday, powerful materials enable network
throughput to be higher and higher… Security breaches are the
second reason: whereas several years ago, network attacks
were only broadcast in closed network security communities,
nowadays they are often publicized in the media.

Nevertheless, security protocols are increasing in safety,
security and efficiency. For instance, since its first version in
1995, the Secure Shell protocol (SSH [1]) has evolved until its
current version and currently supports most new security
algorithms. Another example is the Internet Protocol Security
(IPsec [2]). The IPv6 standard requires this framework for
security of IPv6 compliant systems. IPsec defines two modes
of working, the tunnel and the transport mode. It is linked to
dedicated protocols for establishing secure communication
channels, such as the Internet Key Exchange (IKE [3])
protocol. Other protocols secure the data, such as the
Encapsulating Security Payload (ESP [4]) and Authentication
Header (AH [5]) protocols.

These protocols need high configuration workload and this
is a restraint for deployment of security solutions. IPsec
security requires configuring both end-systems with most
information for each communication channel to secure. This
can be complex for some network topologies. This creates a
greater workload for network administrators.

We propose a new protocol to reduce this issue: our
“Security Capabilities Over Unsecured Topology” (SCOUT)
protocol has been designed to search at each IP-based node for
the security supported mechanisms on the remote nodes and
then to invoke an adequate security channel establishment
mechanism. If the remote node does not support any
compatible security features, the SCOUT protocol will try to
secure the flow at least up the router in the neighborhood of the
node. This protocol avoids the administrator manually
managing a tunnel for each couple of nodes. This reduces
administrator workload and increases network security
deployment scalability.

A. Several security establishment protocols

Before securing the data, security mechanisms require the
secure channel to be established. This establishment may be a
part of the mechanism, such as for the Point-to-Point Tunneling
Protocol (PPTP [6]) which uses a control channel over TCP to
manage a Generic Routing Encapsulation (GRE [7]) tunnel
encapsulating PPP packets. The Extensible Authentication
Protocol (EAP [8]) is an authentication framework frequently
used in wireless networks. It provides some methods to
negotiate secure channels. The EAP-IKEv2 [9] is an extension
from EAP based on the model of IKEv2, presented below.

Other frameworks are composed of a set of protocols with a
subset dedicated to secure channel establishment. IPsec is an
example of such frameworks. It uses Internet Security
Association and Key Management Protocol [10] (ISAKMP) to
manage the different channels on the network node. These
channels can be established through the Internet Key Exchange
(IKE) protocol or its successor the IKEv2 [11, 12] The ticket-
based Kerberized Internet Negotiation of Keys (KINK [13]) is
an alternative to the IKE protocols, centralized around
Kerberos [14] servers to manage authenticity tickets. These
establishment protocols require an external invocation to
establish secure channels, as presented Fig 1.

Figure 1. Invocation, establishment then securing

IKE, IKEv2 and KINK protocols assume that a network
administrator has configured the secure channels prior to using

60 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

them to securely exchange data. The SCOUT protocol we
propose automates the configuration step, reducing network
administrator workload. The Opportunistic Encryption (OE
[15]) extension of the OpenSwan [16] and StrongSwan [17]
IPsec implementations for Linux kernel provides secure
communications on the fly, like SCOUT. Contrary to our
SCOUT protocol, OE has been defined for IPv4 networks only;
OE depends on a third party, which manages a DNS or
DNSSEC [18] server with the pre-loaded keys; it does not
enable data flows to be secured by intermediary routers and it
is not compatible with different establishment protocols to be
used on the same node.

II. SCOUT AND SCOUT6 IN DETAIL

A. The generic SCOUT protocol

The SCOUT protocol provides four different working
modes, depending on SCOUT support on the network nodes.
Fig. 2 illustrates a basic topology with two end-systems H1 and
H2, linked through two routers R1 and R2.

Figure 2. Basic network topology with 2 hosts and 2 routers

If both hosts H1 and H2 support SCOUT, then a secure
channel can be established between H1 and H2, this is the
Host-Host SCOUT mode. When H1 sends a first packet to H2,
the SCOUT daemon of H1 intercepts the packet, communicates
with the SCOUT daemon of H2 and a secure channel is
established between H1 and H2. After that, all packets from H1
to H2 or in the reverse direction from H2 to H1 are forwarded
through this secure channel.

If host H1 and router R2 support SCOUT, but H2 does not,
then a secure channel can be established between H1 and R2,
this is the Host-Router SCOUT mode. When H1 sends its first
packet to H2, the H1’s SCOUT daemon tries to communicate
with H2 which refuses the communication (H2 does not
support SCOUT). Then H1’s daemon tries to communicate
with “the router in the neighborhood of H2” (the first router
forwarding the packets sent by H2) and R2 responds to this
request. A secure channel between H1 and R2 is established as
in the Host-Host SCOUT Mode.

If the first packet sender does not support SCOUT but the
router in the neighborhood does, then the SCOUT protocol can
provide security on the packet forwarding path. In our example
fig. 2, if H1 does not support SCOUT and R1 supports it, then
R1 can take the place of the end-system to secure data. In this
case, if H2 supports SCOUT, then R1 establishes a secure
channel between itself and H2, this is the Router-Host SCOUT
mode. If H2 does not support SCOUT but R2 supports it, then
the secure tunnel is established between R1 and R2; all the data
exchanged between H1 and H2 are then secure between the
neighboring routers R1 and R2, this is the Router-Router mode.
Table 1 resumes the four secure cases.

TABLE I. SCOUT MODES AND SECURE SECTIONS

Link SCOUT Mode

H1-R1 R1-R2 R2-H2

Host-Host (H-H) secure secure secure

Host-Router (H-R) secure secure unsecured

Router-Host (R-H) unsecured secure secure

Router-Router unsecured secure unsecured

In the four different modes, the data between routers R1
and R2 are secure. The SCOUT protocol has been elaborated to
enable not exclusively the hosts but also the routers to provide
the data security, in order to reduce the load of SCOUT
deployment. SCOUT needs indeed to install and configure a
daemon; limiting the deployment to the routers provides a
sufficient level of security for some topologies without
requiring deployment of SCOUT on all end-systems. This
enables the network administrators to secure data for systems
incompatible with SCOUT, for example the systems running
exotic operating systems or systems with low hardware
resources.

If only one node supports SCOUT, then the data cannot be
secure. The default behavior of the SCOUT node is to drop the
“secure-unable” packet. Matrix 1 resumes all the cases which
can happen for the topology represented in fig. 2. In this
matrix, the node names are preceded by an exclamation mark
(“!”) if they do not support SCOUT, otherwise they support the
protocol. For example, the column “H1 and !R1” corresponds
to the cases where node H1 supports the SCOUT protocol and
router R1 does not support it.

TABLE II. OVERVIEW OF ALL POSSIBLE SECURITY CONFIGURATIONS

 H1 and R1 H1 and !R1 !H1 and R1 !H1 and

!R1

H2 and R2 H-H

between H1

and H2

H-H

between H1

and H2

R-H

between R1

and H2

Drop

H2 and !R2 H-H

between H1

and H2

H-H

between H1

and H2

R-H

between R1

and H2

Drop

!H2 and R2 H-R

between R2

and H2

H-R

between R2

and H2

R-R

between R1

and R2

Drop

!H2 and

!R2

Drop Drop Drop

To summarize, data are secure at least between the
neighboring routers or data are dropped before being sent
unsecured on the network. If the end-systems support SCOUT,
they secure the data. If not, if the nearest routers support
SCOUT, they do the work instead. If no system supports
SCOUT, the data cannot be secure and are dropped.

1) SCOUT prerequisites
To allow the SCOUT protocol to secure the data, it requires

several properties. Firstly, the link between the nodes and their
nearest routers must be secure: the Router-Router SCOUT
mode is acceptable if and only if the local networks are secure.
Without security of the link between the node and the router,
the data may be discovered by an attacker.

Secondly, SCOUT requires another protocol “P” to
establish a secure communication channel: the SCOUT
daemon on the local node finds out the security capabilities of

61 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

the remote node, then invokes other programs to create a
secure channel and reconfigure the operating system routing
tables to forward packets through the secure channel.

Thirdly, SCOUT trusts the other protocol “P” to
authenticate the remote node: SCOUT identifies the remote
node and transmits the information to the “P” protocol. That
enables SCOUT to have a low security overhead and avoids
performing multiple times the same authenticity verification.

B. SCOUT in service

1) SCOUT algorithm
The SCOUT protocol algorithm can be summarized as

following. We call “initiator” the first packet sender end-
system which supports SCOUT or else the first router which
forwards the packet and supports SCOUT. We call “destination
node” the end-system to which the packet is sent and
“destination router” the last router which forwards the packet.
An “IP-flow” designates all packets with the same source and
destination addresses, in both directions (sending and
receiving).

The first packet of any IP-flow triggers the process for the
IP-flow. All following packets of the same IP-flow are
forwarded through the secure channel (if the channel has been
successfully established) or are dropped (if no channel has been
created). When the first packet goes through the initiator, it is
delayed and the initiator starts the first step, sending a request
to the destination node for security capabilities.

If the destination node supports SCOUT, it responds
positively with its capabilities to the initiator, then the initiator
invokes secure channel establishment, modifies the routing
table and SCOUT has completed its task.

If the destination node does not support SCOUT, depending
on the implementation of the node and on the configuration of
firewalls in the network, it can respond by sending an error
message or can ignore it and send back no response. In the
second case, the initiator tries again to contact the destination
node several times (arbitrarily three times for our experiments)
before starting the second step. In the first case, the initiator
starts the second step as soon as the destination node error
response is received.

In the second step, the initiator tries to contact the
destination router. If the router response is positive then the
initiator invokes the secure channel, as in the first step. If the
router response is negative, then the initiator cannot assure data
security and indicates to the operating system to drop the IP-
flow. If there is no response from the destination router, then
the initiator tries again several times before considering the
absence of response as negative. Fig. 3 below resumes the
SCOUT algorithm.

The SCOUT protocol uses the IP source and destination
addresses to decide about the security of the data. If the
administrator has nodes with different network interfaces and
different security needs and if he wants to have at the same
time secure and unsecured data on the same link, it is possible
to bind the SCOUT program to certain IP addresses but not all.
Operating systems usually accept that administrators define
different IP addresses for the same network interface, enabling

them to have one address for data requiring security and
another one for data without security requirement.

Figure 3. SCOUT algorithm in a diagram

2) Node behaviour for SCOUT packets
There are four different types of nodes interacting with

SCOUT packets: initiator end-systems (like H1 in fig. 2),
initiator routers (like R1), destination routers (like R2) and
destination end-systems (like H2).

On the initiator end-systems, the SCOUT daemon must
intercept outgoing packets to trigger the SCOUT algorithm
presented in the previous section. On the initiator routers, it
must intercept packets from the directly-linked end-system
during their forwarding. In both cases, if no secure channel
already exists and if security is required, the SCOUT daemon
is triggered.

On the destination end-systems, the SCOUT daemon must
receive incoming requests and respond in consequence to the
sender. On the destination routers, the SCOUT daemon must
intercept the packets sent to directly-linked end-systems during
their forwarding and respond to the sender.

Details on the contents of the requests and the responses
and how the protocol differentiates the packets for destination
nodes from the ones for destination routers are explained in the
next section describing how the generic SCOUT protocol is
instantiated with the IPv6 protocol.

C. SCOUT with IPv6: SCOUT6

The SCOUT protocol designates the main guidelines to
enable initiator nodes first to discover destination node security
capabilities and second to invoke secure channel creation
between the initiator and the destination. This section will give
information to concretely merge the SCOUT specifications
with the Internet Protocol version 6 (IPv6). The design of the
SCOUT protocol instantiated to the IPv6 protocol will be
called “SCOUT6”. Thus, the generic part is designated by the
name “SCOUT” while “SCOUT6” designates the
implementation-specific part for IPv6.

Conforming to the RfC 4294[19], IPv6 nodes must support
IPsec. The protocol most used to establish an IPsec secure

62 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

channel is currently the IKEv2 protocol. This is why SCOUT6
with IKEv2 should be chosen over other protocols, but a
SCOUT6 daemon configuration may select another protocol if
the administrator so wants.

D. SCOUT6 in detail

The IPv6 protocol enables packets to transport data plus
additional information in “extension headers”. These optional
headers are managed at the operating system level and,
depending on the information, may influence the kernel or
intermediate network layers for packet management. The
SCOUT6 design uses two IPv6 extension headers described in
detail later: the Destination Option and the Hop-by-Hop option.
These extensions make it possible to extend the IPv6 protocol
with SCOUT6 support and to maintain compatibility with the
noncompliant SCOUT6 nodes.

With SCOUT6, we need to exchange three kinds of
information: one for the initiator node to ask about the
destination end-system security capability, one for the initiator
to ask about the destination router capability and one for the
destination nodes to respond to the initiator.

1) Destination Option Query (DOq)
The IPv6 Destination Option (DO) enables the SCOUT6

protocol to contact the destination end-system SCOUT daemon
and ask for security capabilities. IPv6 requirements specify that
this option must be examined only by the packet destination
system. It contains the type of the next IPv6 packet, the length
of the extension header and at least six bytes of specific TLV-
coded data. The Type-Length-Value (TLV) contains a byte for
the type, orienting the operating system packet management
(see table 3 for more details).

SCOUT6 initiator sends to the destination end-system an
IPv6 packet query named “DOq”. This packet is illustrated by
fig. 4. It contains a Destination Option extension header with a
type of 196 and a data length of 4 bytes. The DO data value is
not significant for DOq, it is some padding data to align the
IPv6 total packet length to a multiple of 8.

TABLE III. TYPE IDENTIFIER ACTIONS FOR PROCESSING IPV6 NODES,
FROM THE RFC 2460[20]

highest-order 2 bits of

the DO type identifier

Type range Operating System default

behaviour

00 0..63 Ignore the packet

01 64..127 Drop the packet

10 128..191 Send an ICMP Parameter Problem

to the sender

11 192..255 If the sender IPv6 address is not a

multicast address, then send an

ICMP Parameter Problem to the

sender, else drop the packet

The experimental type 196 is not yet assigned by the IANA
[21] and the value may change in the future. A value of 196 as
type of DO enables the destination end-system operating
system to decide what to do with this packet. If the destination
node supports SCOUT6, the daemon intercepts the DOq and
sends a DOr packet as described below. If it does not support
SCOUT6, then the operating system sends an ICMP error to
the initiator which consequently knows that the destination
end-system does not support SCOUT6.

Figure 4. IPv6 packet format with the Destination Option Query

2) Router Alert Query (RAq)
In the case that the initiator does not have any response to

several DOq sent or if it receives an ICMP Parameter Problem
on its DOq extension, then it sends out, to the destination
router, other packets called “Router Alert queries” (RAq). In
the same way as with the Destination Option, the IPv6 Hop-by-
Hop extension enables a packet sender to ask each intermediate
router to analyze the packet data. The Router Alert option[22]
uses this extension with a specific TLV-type code; the TLV-
value code can specify a subtype. SCOUT6 uses the Router
Alert option with an experimental and IANA-unassigned value
of 42 to indicate “Router Alert Query”. This RAq is for the
SCOUT6 daemon on the destination router.

The initiator sends a “RAq” packet, containing this Router
Alert extension, to the destination end-system. Each router
forwarding the RAq packet will perform an operation. If the
operating system does not support SCOUT6, the packet is
forwarded and the extension is ignored. If the operating system
supports SCOUT6 but the router is an intermediate router and
not the destination router, the packet is forwarded. If the router
supports SCOUT6 and is the destination router, it intercepts the
packet and sends a DOr packet as described below. If the final
router does not support SCOUT6, then the packet is received
by the destination end-system and ignored (it does not contain
other data).

3) Destination Option Response (DOr)
If a SCOUT6 daemon on a destination node (router or end-

system) receives a query from the initiator, then the destination
node sends back a response. To do so, it sends an IPv6 packet
called Destination Option Response (DOr) with a destination
option of type 66, as represented in fig. 5. The experimental
type 66 informs the receiver to drop the packet if it does not
know what to do with it. The DOr value field contains a 32-bit
binary mask of supported protocols: a “1” bit means the
destination node supports a specific security protocol,
depending on the position of the bit in the mask. Currently, the
Least Significant Bit is assigned to the IKEv1 protocol, the
next bit is for the IKEv2 protocol, the third bit is for the KINK
protocol and the Most Significant Bit is for experimental
usage; all other bits are reserved for future protocol support.
The DOr packet is completed with 16 bytes of data filled with
the destination address of the DOq packet.

Figure 5. Destination Option Response TLV-data values

63 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

This data enables the initiator to identify which IP-flow is
allocated to the DOr. The DOr packet source address is the
address of the destination node (router or end-system)
accepting the security. The DOr packet destination address is
the address of the initiator. The DOr packet Destination Option
data is the destination end-system address, used to identify the
allocated IP-flow and to know which DOq or RAq has
generated the DOr.

If a destination end-system sends back a DOr, then the DOr
packet source address has the same 16 bytes as the DOr
Destination Option data value. If a destination router sends
back a DOr, the DOr packet source is not the DOr Destination
Option data value. Thus the initiator knows that the security
will be assured by the destination router and not the destination
end-system. The initiator also knows which destination node to
contact in order to establish a secure channel.

In the case that there is already an existing secure channel
between both ends, the SCOUT6 daemon does not invoke
another channel but reuses the existing one to save resources;
the daemon just adds a new route for the IP-flow through the
secure channel.

E. Concrete examples

1) Host-Host security
Fig. 6 illustrates a typical usage of the SCOUT6 protocol.

In this scenario, both end-systems support SCOUT6. When the
first host H10 sends its first packet to H21, the H10 SCOUT6
daemon delays the packet and sends a query (DOq) to H21. In
response, the H21 host sends a DOr containing its IPv6 address
to H10. Then H10 initiates a secure communication channel
with H21, reroutes all packets for H21 through this tunnel and
releases the delayed first packet. On the other host H21, the
channel establishment is followed by a rerouting of packets for
H10 through the secure channel. All following communication
between H10 and H21 will be secure.

Figure 6. Host-Host SCOUT mode

2) Router-Router security
In the previous scenario, we do not care if the routers

support or not the SCOUT6 protocol, because the end-systems
do and manage the security. Fig. 7 presents the next scenario
and illustrates the opposite case where no end-system supports
SCOUT6 but both nearest routers do.

In this scenario, when H11 sends its first packet for H22, its
nearest router R1 intercepts and delays the packet during the
forwarding and send a query (DOq) instead. H22 does not
support the SCOUT6 protocol. Conforming to IPv6
specification, the H22 operating system responds to R1 by
sending an ICMP Parameter Problem packet.

Figure 7. Host-Host SCOUT mode

Then R1 knows H22 cannot assume the security and tries to
contact the destination router by sending a query through a
router alert message (RAq). Intermediate routers forward this
packet, ignoring the RAq information: they do not support
SCOUT6 or are not the router nearest H22. The destination
router R2 supports SCOUT6 and is the router nearest H22 thus
R2 processes this packet RAq: it sends R1 a response (DOr)
containing the original destination of the RAq (=H22’s IPv6
address). When R1 receives the DOr packet from R2, it
invokes a secure channel between R1 and R2 and inserts routes
from R1 for R2 and H22 through the secure channel.

After having successfully established a tunnel between R1
and R2, if another host connected to R1 sends unsecured
packets to any un-supporting SCOUT6 host connected to R2,
the R1 daemon will reuse the secure channel; it just inserts new
routes and does not re-invoke a potentially large number of
channels between R1 and R2: a single channel multiplexes all
unsecured IP-flows between R1 and R2.

3) Scenarios overview
Table 4 below summarizes the different scenarios which

can take place with SCOUT6. The topology used to establish
the table is shown in fig. 8, where a star “*” means “SCOUT6
supporting node”, all other nodes do not support SCOUT6. In
the table, the “path” column indicates the security of each
segment: a minus (“-“) is an unsecured segment and an equal
(“=”) is secure.

The scenarios of table 4 are in chronological order. In
scenario 2, a secure channel has been established from H*10 to
R*2 in order to secure the IP-flows between H*10 and H22.
This secure channel is reused in the next scenario 3 to secure
the IP-flows between H*10 and H23.

Figure 8. Example of extended topology

64 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

TABLE IV. SCOUT6 SCENARIOS OVERVIEW

 Path SCOUT Mode used by

SCOUT6

1 H*10 = H*21

(H*10 =R1=R2 = H*21)

Host-Host DOq, DOr

2 H*10 = R*2 – H22

(H*10 =R1=R*2 – H22)

Host-Router DOq, RAq, DOr

3

(after 2)

H*10 = R*2 – H23

(H*10 =R1=R*2 – H23)

Host-Router,

channel reusing

DOq, RAq, DOr

4 H11 – R*1 = H*21

(H11 – R1 = R2 = H21)

Router-Host DOq, DOr

5

(after 4)

H12 – R*1 = H*21

(H12 – R1 = R2 = H21)

Router-Host,

channel reusing

-

6 H12 – R*1 = R*2 - H22

(H12 – R1 = R2 = H22)

Router-Router DOq, RAq, DOr

7

(after 6)

H12 – R*1 = R*2 - H23

(H12 – R1 = R2 = H23)

Router-Router,

channel reusing

DOq, RAq, DOr

III. SCOUT6 IN PRACTICE

A. Application of SCOUT 6 to a peer-to-peer network

Peer-to-peer topologies are network distributions without
central nodes to control and distribute the tasks; in a peer-to-
peer network, all nodes are equally privileged. Internet was
initially adherent to the peer-to-peer approach through the
Arpanet project but its growing usage of the web converted it
year by year into a mainly centralized network around several
mainframes and powerful servers. Nevertheless some peer-to-
peer protocols continue to support the Internet. For example,
the Border Gateway Protocol (BGP[23]) backs the core routing
decisions on the Internet; its behavior is based on messages
between adjacent peers to exchange mainly IP network
prefixes.

The BGP protocol was originally designed with little
consideration for protection of the information it carries and
thus there is no mechanism internal to BGP that protects this
protocol. RfC 4272[24] is a BGP security vulnerability analysis
enumerating some attacks against BGP. The SCOUT6 protocol
we propose may provide automatically established secure
channels for a peer-to-peer network, such as the one running
BGP. The Secure Border Gateway Protocol (Secure-BGP [25])
uses IPsec features to secure BGP messages and thus improve
BGP message security, but lets IPsec configuration information
to be defined by the administrators. SCOUT6 can automate
configuration item definition.

Without SCOUT, in a peer-to-peer network with n equal
and connected nodes, each node may communicate with up to
(n-1) adjacent nodes. In the worst case, we have then n(n-1)/2
secure duplex channel to establish. Without SCOUT, the
administrator overhead is important: they have to configure
n(n-1) channel ends.

With SCOUT, administrators must install and configure the
daemon on each node. They need not configure it with all
remote possible nodes to secure. Therefore, the installation
must be repeated only n times and not n(n-1) anymore. Fig. 9
describes the cost in lines of configuration in function of the
number of nodes. We estimated we need 9 lines of
configuration per channel per node.

Figure 9. Configuration cost depending on the number of nodes

Moreover, only the useful channels are established: if two
nodes communicate together, then SCOUT invokes a channel
between them to secure the messages; if two nodes never
communicate, then SCOUT never invokes the channel, thus
some computer and network resources are saved.

B. SCOUT6 overhead for network delay and capacity

To discover the security capabilities of the different nodes,
the SCOUT protocol needs to exchange messages on the
unsecured network. The SCOUT6 implementation, based on
IPv6 packets, uses the DOq, RAq and DOr messages explained
in the previous section. Packet lengths are respectively equal to
48, 48 and 64 bytes. In the best case, there is only one DOq and
one DOr packet exchanged on the network, thus 96 bytes in
two packets. In the worst case, there are three DOq plus three
RAq plus three DOr, thus nine packets containing a total of 480
bytes.

To experiment the SCOUT6 protocol, we elaborated a
topology with 4 groups of nodes representing major Internet
Service Providers (ISP) in France: Orange, Bouygues Telecom,
Sfr and Free major companies. Each group has assigned to it an
additional delay of transmission, measured with the commands
traceroute and ping to their main web server from our
laboratory. We are connected through a fifth ISP called
RENATER. Fig. 10 describes the average delays and the jitter
we have measured on December 2011, the 6th at 11 AM and
the experimental topology we use to validate our SCOUT6
implementation. Each group is associated to a set of 256 IPv6
addresses. To emulate this experimental network, we used
VirtualBox[26] with 4 Virtual Machines (VM with a mono-
core processor and 256 MB of RAM) with Debian and a
SCOUT6 daemon, linked with a pseudo-Ethernet and
configured with delays and jitter for outgoing packets through
the Linux netem[27] kernel module (“Network Emulation”)
and the program Traffic Control (TC[28]). On each VM, a
script tries to ping other VM from random addresses to other
ones, the ping simulates data connections.

Figure 10. Average delays and jitters for 4 ISPs

65 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

Figure 11. Average delays and jitters for 4 ISPs

The ping request triggers the SCOUT6 daemons and
conducts to establish secure tunnels to exchange securely the
ping data. The SCOUT6 daemon has been instrumented to
measure, for each secure channel, the delays between the time
of the first packet to secure and the time of the channel
invocation. Fig. 11 resumes the measured delays in function of
the load of the VM (the load is quantified in number of
established channels).

We can observe an average delay of 85 milliseconds (ms)
for the total delay between the packet interception and the
channel invocation. During this SCOUT6 discovery stage, the
daemon sent a DOq and received the corresponding DOr.
Measures are globally constant over the time while an
increasing number of tunnels were established. At the end of
the experiment, up to 228 tunnels has been established and can
be used to transmit securely the data between the peers.

The experimental duration average of the SCOUT6
implementation proceeding is 5 ms (measures are mostly
between 1 and 10 ms). Sending one packet for the DOq plus
one other for the DOr spends about 40 ms in each case. Several
measures are around this Round-Trip Time (RTT) of 40 ms,
but most of them are twice. The 80 ms observed are due to an
additional RTT for the Neighbour Discovery Protocol (NDP)
which resolves the IPv6 global addresses over the link layer of
the Internet. In our experiments, the channels need several
seconds to be established, about 50 times more than the whole
duration of the SCOUT6 discovery stage.

C. Complexity of common operations

To evaluate SCOUT6 benefits, we propose an overview of
the costs (in terms of modified lines of configuration) on a
centralized network topology (e.g. the traditional use case for
network management). We will examine common operations
such as adding and removing clients and servers. In a
centralized network, we suppose the secure channels are
established only between one server and one client. Two clients
or two servers cannot be directly connected. Moreover, it is
only the clients who initiate channel establishments; the servers
do not contact clients to create secure channels. Let’s assume a
star topology with N clients and 1 server.

TABLE V. OVERVIEW OF COSTS FOR COMMON OPERATIONS

 Without SCOUT With SCOUT

Adding a

client (N+1)

Configure this (N+1)th client

and configure the server

[O(2)]

Install SCOUT6 on the client

[O(1)]

Modifying the

security data

for the client

N or

removing the

client N

Reconfigure both ends: the

client N and the server [O(2)]

Reconfigure the client N and,

depending on the security

protocols, server may

invalidate its security caches

[O(2)]

Adding a new

server

On the new server, configure

one tunnel per potential

client and on each client,

configure a channel with the

new server [O(2*N)]

Install SCOUT6 on the

server [O(1)]

Removing a

server

Reconfigure each client

[O(N)]

Nothing to do [O(0)]

IV. CONSIDERATIONS OF SECURITY IN SCOUT6

A. SCOUT6-related attacks

SCOUT6 has been designed to search for node security
capabilities and to invoke, if possible, secure channel
establishment between the nodes. Security is enforced by the
establishment protocol invoked by SCOUT6, but does our
protocol introduces some new vulnerabilities? We propose to
give some elements of response to this question in this section.
We would assume here that the “P” establishment protocol
invoked by SCOUT6 is the IKEv2 protocol.

1) Packet injection
Injection of valid packets into the system by another system

not participating in the normal process is a common attack
called “packet injection”. In the case of SCOUT6, 3 types of
packets can be injected: DOq, RAq and DOr packets. These
packets can be sent to SCOUT6 compliant systems or else to
IPv6 compliant system without SCOUT6 support. Table 6
summarizes the different types of injection and the impacts.

Injecting a DOq or a RAq to a SCOUT6 compliant system
leads this system to respond with a DOr packet, thus to add a
light overhead on the network (64 bytes are sent). If the nearest
router supports SCOUT6 protocol, injection of RAq may lead
the attacker to find the nearest router address. Injecting a DOr
to a SCOUT6 compliant system does nothing: the receiving
system has not sent any associated DOq or RAq in the past and
will therefore ignore this orphan DOr packet (a non-orphan
DOr is the response to a previous DOq or RAq query, an
orphan DOr has no DOq nor RAq associated). Injecting a DOq
to a SCOUT6 non-compliant system may be ignored by the
receiving system or may generate an ICMPv6 Parameter
Problem packet. This case is considered as a normal case and
used to trigger the RAq sending step without waiting until the 3
DOq are sent. Injecting a RAq or a DOr packet to an IPv6
compliant system which does not support SCOUT6 has no
effect: conforming to the RfCs[20], packets with these kinds of
unknown options are dropped by the operating system.

Note that a SCOUT6 non-compliant system which receives
a DOr can, in normal conditions, be considered as probably
attacked. DOr packets can only be sent in response to a DOq or
a RAq, and these packets are normally only sent by SCOUT6
compliant systems!

66 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

TABLE VI. PACKET INJECTION AGAINST SCOUT6

Type Sent to a SCOUT6

compliant system

Sent to a SCOUT6

non-compliant system

DOq A DOr is sent back in

response

An ICMPv6 Parameter

Problem is sent back in

response

RAq A DOr is sent back in

response, containing

the router address

Ignored by the receiver

DOr Ignored (viewed as an

orphan DOr)

Ignored by the receiver

2) Replayed packets
An attacker may listen to the SCOUT6 messages, intercept

some of the packets and inject them again into the network to
destabilize nodes. But in SCOUT6 design, the replay is already
implemented to compensate the risk of packet loss because
IPv6 does not guarantee reliability. The DOq and RAq queries,
without responses, are sent again another two times before
being considered negative. A system may then receive multiple
times the same DOq or RAq; it will just send again an
associated DOr.

The DOr contains IP source and destination addresses for
the IP-flow to secure. The SCOUT6 implementation uses this
information that enables the initiator to identify which IP-flow
to secure and to know both ends in order to establish a secure
channel between them. When the DOr is received, the
SCOUT6 implementation checks first that the DOr is not an
orphan DOr. Then the SCOUT6 daemon invokes secure
channel establishment and updates its cache to ignore future
similar DOr: the daemon deletes the associated pending DOq
or pending RAq entry from the “list for search in progress”. A
“list” is required to manage the retries and their timeouts,
before considering the absence of response as negative. After
updating this list, any other received DOr are considered
orphans and therefore ignored: there is no pending DOq or
RAq anymore which can be associated to the replayed DOr.

3) Packets stolen, altered and man-in-the-middle
An attacker may intercept the SCOUT6 messages during

their forwarding at the middle of the network. It can silently
drop these packets, preventing the SCOUT6 daemon from
establishing a secure channel. If the attacker has the capacity to
drop SCOUT6 packets, then it has the capacity to drop IKEv2
packets too; it may block SCOUT6 security searching but may
equally block IKEv2 secure channel establishment. Thus a
SCOUT6 steal packet protection is useless.

The attacker may use its capacity of interception to try a
man-in-the-middle attack. SCOUT is not designed to secure the
connections itself, but is designed to search for connection
security solutions. The attacker may intercept and alter
SCOUT6 packets, causing both legitimate ends to try to
establish a secure channel between them and the attacker. But
then the IKEv2 daemon will realize the attempt at
impersonation and reject channel establishments.

The attacker could try to alter the DOr data content, i.e. the
IPv6 address of the destination host. In this case, the altered
DOr no longer contains the valid information for the initiator
to associate this DOr to the DOq or RAq query, thus the altered
DOr will be considered orphan and therefore ignored.

4) Spoofing of IP addresses
An attacker may try to spoof the source address of the

SCOUT6 packets. If the attacker sends a DOq or RAq with a
spoofed source address, the packet may be ignored (if the
destinations are not SCOUT6 compliant) or the DOr will be
sent to the spoofed node which will ignore it (the spoofed node
considers this DOr as orphan). If the attacker sends a DOr with
a fake IP source address, the packet will be discarded: the
receiving system will ignore it in all cases (orphan DOr for a
SCOUT6 compliant node, packet to drop for others).

An attacker may try to spoof the destination address. If the
packet is a DOq or a RAq, the attacker will receive an ICMP
error parameter problem (if the spoofed node does not support
SCOUT6) or a DOr (if it supports SCOUT6) from the spoofed
destination. If the altered packet is a DOr, this packet will be an
orphan for the destination host which will manage it.

5) Denial of Service
An attacker may use SCOUT6 packets to try a denial-of-

service attack on the victim. SCOUT6 daemons can serve as
mirroring hosts: when you send them a DOq or RAq, they
respond with a DOr thus increasing the network load. But
SCOUT6 packets are small (48 and 64 bytes). Moreover the
attacker can easily generate IPv6 packets with the same DoS
effects and with more data to overload a network, just by
conforming to the IPv6 specifications: IPv6 compliant nodes
should send an ICMPv6 Parameter Problem packet to the
emitter when they receive an IPv6 packet with an unknown
Destination or Hop-by-hop Option.

A node may be led to accept more secure channels than it
can manage: if the attacker has a great number of IPv6
addresses, it can use them to establish 1 channel per address
and then overload the destination system. This is not really a
vulnerability of the SCOUT6 protocol but a negative
consequence of the scalability it provides. This vulnerability
can be avoided by limiting the maximum number of channels
the system accepts. If this limitation is not acceptable, the
vulnerability can be reduced by using efficient algorithms to
manage the channels and to delete unused channels.

6) An effective attack against SCOUT6
An attacker may influence SCOUT6 behavior successfully

by silently discarding all DOq queries and letting through the
RAq and DOr messages. If both the destination router and the
destination host are SCOUT6 compliant, then the initiator will
establish the secure channel not between itself and the
destination host but between itself and the destination router. In
this case, the path between the destination router and the
destination host is NOT secure despite the fact that it could in
fact be secure.

This is why the first hypothesis of SCOUT protocol is that
“the local networks are secure”. This hypothesis may be
ignored if the SCOUT daemon is configured to refuse the Host-
Router and Router-Router modes and then it will never send
any RAq. But this possibility may significantly decrease
security capabilities.

67 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

V. CONCLUSION AND FUTURE WORK

We have presented in this paper the new SCOUT protocol
which automatically discovers the security capabilities of nodes
on an IP-based network topology. Not only can the SCOUT
protocol invoke secure channel establishment between end-
systems if both support the protocol, but it can also compensate
for the absence of SCOUT support on end-systems by enabling
the nearest routers to provide the security if they support
SCOUT. Moreover the SCOUT protocol reduces administrator
configuration workload and increases scalability of network
security mechanisms.

The instantiation of the SCOUT protocol with IPv6
completes the generic SCOUT protocol with a concrete
protocol named SCOUT6. Our experiments indicate a low
overhead in terms of exchanged data and additional delays. Our
paper concludes with a study of the vulnerabilities linked to the
SCOUT6 protocol.

Nevertheless we have to conduct further research to find
solutions to the effective attack against SCOUT6 presented
above and, if possible, to validate formally these solutions.
Moreover, we are working on completing the set of
establishment protocols supported by SCOUT6: currently the
SCOUT6 protocol experiments are based only on one secure
channel establishment protocol (IKEv2), whereas SCOUT6 is
designed to support multiple protocols. Another point we are
working on concerns secure multicast channels. Current
SCOUT design is clearly unicast-oriented. In the future, we
plan to extend the SCOUT protocol to support multicast
communications.

ACKNOWLEDGMENT

We would like to greatly thank Rupert Salmon for his help
in editing this paper. We express also our gratitude to Julien
Marchand for his discussions around this paper.

REFERENCES

[1] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol
Architecture. RFC 4251 (Proposed Standard), January 2006

[2] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC
4301 (Proposed Standard), December 2005.

[3] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC 2409
(Proposed Standard), November 1998. Obsoleted by RFC 4306[11],
updated by RFC 4109.

[4] S. Kent. IP Encapsulating Security Payload (ESP). RFC 4303 (Proposed
Standard), December 2005.

[5] S. Kent. IP Authentication Header. RFC 4302 (Proposed Standard),
December 2005.

[6] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and G. Zorn.
Point-to-Point Tunneling Protocol (PPTP). RFC 2637 (Informational),
July 1999.

[7] S. Hanks, T. Li, D. Farinacci, and P. Traina. Generic Routing
Encapsulation (GRE). RFC 1701 (Informational), October 1994.

[8] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz.
Extensible Authentication Protocol (EAP). RFC 3748 (Proposed
Standard), June 2004. Updated by RFC 5247.

[9] H. Tschofenig, D. Kroeselberg, A. Pashalidis, Y. Ohba, and F. Bersani.
The Extensible Authentication Protocol-Internet Key Exchange Protocol
version 2 (EAP-IKEv2) Method. RFC 5106 (Experimental), February
2008.

[10] D. Piper. The Internet IP Security Domain of Interpretation for
ISAKMP. RFC 2407 (Proposed Standard), November 1998. Obsoleted
by RFC 4306[11].

[11] C. Kaufman. Internet Key Exchange (IKEv2) Protocol. RFC 4306
(Proposed Standard), December 2005. Updated by RFC 5282.

[12] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen. Internet Key Exchange
(IKEv2) Protocol. RFC 5996 (Proposed Standard), September 2010.
Updated by RFC 5998.

[13] S. Sakane, K. Kamada, M. Thomas, and J. Vilhuber. Kerberized Internet
Negotiation of Keys (KINK). RFC 4430 (Proposed Standard), March
2006.

[14] Website « Kerberos : The Network Authentication Protocol »,
http://web.mit.edu/kerberos/, 2011/12/13

[15] M. Richardson and D.H. Redelmeier. Opportunistic Encryption using
the Internet Key Exchange (IKE). RFC 4322 (Informational), December
2005.

[16] The Openswan project website,
https://www.openswan.org/projects/openswan/, 2012/03/09

[17] Website of Strongswan, the Open Source IPsec-based VPN Solution,
http://www.strongswan.org/, 2012/03/09

[18] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS
Security Introduction and Requirements. RFC 4033 (Proposed
Standard), March 2005

[19] J. Loughney. IPv6 Node Requirements. RFC 4294 (Informational), April
2006. Updated by RFC 5095.

[20] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. RFC 2460 (Draft Standard), December 1998. Updated by
RFCs 5095, 5722.

[21] Internet Assigned Numbers Authority website, www.iana.org,
2011/12/13

[22] C. Partridge and A. Jackson. IPv6 Router Alert Option. RFC 2711
(Proposed Standard), October 1999.

[23] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).
RFC 4271 (Draft Standard), January 2006.

[24] S. Murphy. BGP Security Vulnerabilities Analysis. RFC 4272
(Informational), January 2006.

[25] Kent, S., Lynn, C., and Seo, K., “Secure Border Gateway Protocol
(Secure-BGP)”, IEEE Journal on Selected Areas in Communications,
Vol. 18, No. 4, April 2000, pp. 582-592

[26] VirtualBox website, www.virtualbox.org, the 2011/12/13

[27] The Network Emulation webpage,
http://www.linuxfoundation.org/collaborate/workgroups/networking/net
em, the 2011/12/13

[28] Linux Advanced Routing & Traffic Control website, lartc.org, the
2011/12/13

68 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

