
Subverting Byte Code Linker service to characterize

Java Card API

Samiya Hamadouche

UMBB/FS/LIMOSE,

5 Avenue de l’indépendance, 35000 Boumerdès, Algeria

Email: hamadouche-samiya@umbb.dz

Guillaume Bouffard, Jean-Louis Lanet

SSD Team – XLIM/Université de Limoges

83 Rue d’Isle, 87000 Limoges, France

Emails: guillaume.bouffard@xlim.fr, jean-louis.lanet@xlim.fr

Bruno Dorsemaine, Bastien Nouhant

Alexandre Magloire, Arnaud Reygnaud

Students in Bachelor of Computer Science at Université de Limoges

83 Rue d’Isle, 87000 Limoges, France

Emails: bruno.dorsemaine@etu.unilim.fr, bastien.nouhant@etu.unilim.fr,

alexandre.magloire@etu.unilim.fr, arnaud.reygnaud@etu.unilim.fr

Abstract—Smart card is the safest device to execute crypto-
graphic algorithms. Recent cards have the ability to download
programs after issuance. These applications are verified before
being loaded in the card. Recently, the idea of combining logical
attacks with a physical attack in order to bypass byte code
verification has emerged. For instance, correct and legitimate
Java Card applications can be dynamically modified inside the
card using a laser beam. Such applications become mutant
applications. We propose here to go a step further in designing
explicit viruses for smart cards. In order to generate efficient
viruses we need to retrieve information concerning the linking
process in the card. We have developed and experimented on
most of the Java Card publicly available this generic attack. We
present an example of virus using the result of this attack.

Index Terms—Byte Code Linker, Java Card API, Characteri-
zation, Logical Attack.

I. INTRODUCTION

Java Card is a kind of smart card which represents today

most of delivered cards on the field and implements one of

the two editions, “Classic Edition” or “Connected Edition”,

of the standard Java Card 3.0 [1]. Such a smart card embeds

a virtual machine which interprets code already romized with

the operating system or downloaded after issuance. Due to

security reasons, the ability to download code into the card is

controlled by a protocol defined by Global Platform [2]. This

protocol ensures that the owner of the code has the necessary

authorization to perform the action. Java Card being an

open platform for smart cards, different applications from

different providers run in the same smart card. Thanks to type

verification, byte codes delivered by the Java compiler and

the converter (in charge of giving a compact representation

of class files called the CAP file) are safe, i.e. the loaded

application is not hostile to other applications in the Java

Card. Furthermore, the Java Card firewall checks access

permissions between applications in the card, enforcing

isolation between them.

Smart card manufacturers have issued SIM cards with NFC

Java Class Files

Byte Code Verifier (BCV) Java Card Files

Byte Code Converter Byte Code Signer

(a) off-card security model

Java Card Files BCV Installed applet

Firewall

(b) on-card security model

Fig. 1. Java Card Security Model

capability that allow downloading applications (called Basic

Application) under the responsibility of the network operator.

It opens new approaches to gain illegally access to secret

information.

A. The Java Card Security Model

To install an applet on a Java Card, your applet is developed

with the Java language. After being buit by the java compiler,

the java class file is obtained. Next, to translate the class

files into files to sent to the card, the Java Card toolchain is

composed by the Byte Code Verifier (BCV), which checks

the compliance to the Java Card security rules, the Byte

Code Converter which translates your class files to the

Java Card files (i.e. the CAP file) which may be signed. The

on-card Global Platform layer verifies the applet signature

(Figure 1(a)).

When the CAP file (Figure 1(b)), which contains the trans-

lated Java applet, is sent to the card the BCV component which

75 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

verifies its the compliance. A firewall component prevents the

installed applet from access to unauthorized context.

B. The CAP File

The CAP (for Convert APplet) file format is based on

the notion of components. It is specified by Oracle [1]

as consisting of ten standard components: Header,

Directory, Import, Applet, Class, Method, Static

Field, Export, Constant Pool and Reference

Location and one optional: Descriptor. Moreover, the

targeted Java Card Virtual Machine (JCVM) may support

user custom components. We except the Debug component

because it is only used on the debugging step and it is not

sent to the card.

Each component has a dedicated role and is linked to each

other. A modification, intentional or not, of a component is

difficult and may provide a meaningless file. An invalid file is

often detected during the installation step by the target JCVM.

C. Mutant Applications

Java Cards have shown an improved robustness compared

to native applications regarding many attacks using both

physical and logical techniques. Currently, the most powerful

attacks are hardware based attacks and particularly fault

attacks. A fault attack modifies parts of memory content or

signal on the internal bus and leads to a deviant behavior

exploitable by an attacker. A comprehensive consequence

of such attacks can be found in [3]. Although fault attacks

have been mainly used in the literature from a cryptanalytic

point of view (see [4], [5], [6]), they can be applied to

every code layers embedded in a device. For instance, the

attacker may change the exact byte of a program to bypass

counter-measures or logical tests. We called such modified

application a mutant.

Mutant applications are the result of the modification of

the original code, but it can also turn into viruses if the

attacker can hide its hostile application into a well-formed

one. If such an application is transformed by a fault attack

it will have the expected deviant behavior. In order to

design a useful virus the attacker must have access to the

methods of the API. Thanks to the design of Java Card

the embedded linking process never provides information

about the internal addresses of the these methods. The attack

presented here aims at using the internal linking process to

leak this information. Our contribution concerns mainly a

generic framework to retrieve all the method addresses of

any Java Card platform. The second point presents how to

use this information to obtain a precise static analysis on an

ability of an application to become hostile with the SmartCM

framework [7].

The rest of the paper is organized as follows. First we

present the state of the art concerning the logical attacks

and the combined attacks. Then, we present the concept of

code mutation in presence of a fault attack and how we can

transform a mutant into a virus. After that, we introduce the

SmartCM framework to prevent loading a fault attack enabled

mutant. The next paragraph reviews some known logical and

combined attacks.

II. VIRUS AND ANTI-VIRUS IN THE JAVA CARD WORLD

The design of a Java Card virtual machine cannot rely

on the environmental hypotheses of Java. In fact, physical

attacks have never been taken into account during the design

of the Java platform. To fill this gap, card designers had

developed an interpreter which relies on the principle that

once the application has been linked to the card, it will not be

modifiable again. The trade-off is between a highly defensive

virtual machine which will be too slow to operate and an

offensive interpreter that will expose too much vulnerabilities.

The know-how of a smart card design is in the choice of a

minimal countermeasure set with high fault coverage.

A. Logical Attacks

In this section, we will explain how to inject logical attacks

into a Java Card platform. The aim of an attacker is to generate

malicious applications that may bypass firewall restrictions,

byte code verification and modify other applications, even if

they do not belong to the same security package.

1) The Hubbers and Poll’s Attack: Erik Hubbers et al. made

a presentation at CARDIS 2008 about attacks on smart cards.

In their paper [8], they presented a quick overview of the

classical available attacks and gave some countermeasures.

They described four methods:

1) CAP file manipulation,

2) Fault injection,

3) Shareable interfaces mechanisms abuse and

4) Transaction Mechanisms abuse

The goal of (1) is to modify the CAP file after the building

step to bypass the BCV. The problem is that, like explained

before, an on-card BCV is an efficient system to block this

attack. Using the fault injection in (2), the authors succeed

to bypass the BCV. Even if there is no particular physical

protection, this kind of attack is efficient but quite difficult to

perform and expensive.

The idea of (3) to abuse shareable interfaces is really

interesting and can lead to trick the VM. The main goal is

to obtain a type confusion without the need to modify the

CAP files. To do that, the authors created two applets which

communicate using the shareable interface mechanism. To

create a type confusion, each applet uses a different type of

array to exchange data. During compilation or on loading,

there is no way for the BCV to detect a problem. But it seems

that every card we tried it on, with an on-card BCV, refused

to allow applets using shareable interface. As it is impossible

for an on-card BCV to detect this kind of anomaly, Hubbers et

al. emitted the hypothesis that any use of shareable interface

76 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

on card can be forbidden with an on-board BCV.

The last option left is the transaction mechanism (4).

The purpose of transaction is to make a group of atomic

operations. Of course, it is a widely used concept, for instance

in databases, but still complex to implement. By definition,

the rollback mechanism should also deallocate any objects

allocated during an aborted transaction and reset references

to such objects to null. However, Hubbers et al. found some

cases where the card keeps the reference to objects allocated

during transaction even after a rollback.

Moreover, the authors described the easiest way to make

and exploit a type confusion to gain illegal access to otherwise

protected memory. A first example is to get two arrays with

different types, a byte and a short array. If a byte array of 10

bytes is declared and it exists a reference to a short array, it

is possible to read 10 shorts, so 20 bytes. With this method

they can read the 10 bytes stored after the array. If Hubbers

et al. increase the size of the array, they will be able to read

as much memory as they want. The main problem is more

how to read memory before the array?

The other usual used confusion is between an array of bytes

and an object. If Hubbers et al. put a byte as first object

attribute, it is bound to the array length. Then, it is really

easy to change the length of the array using the reference to

the object. With this attack, the problem becomes how to give

a reference to an object for another object type?

2) Barbu et al.’s Attack: Combined Physical & Logical

Attack: At CARDIS 2010, Barbu et al. described a new kind

of attack in their paper [9]. This attack is based on the use

of a laser beam which modifies a runtime type check (the

checkcast instruction). This applet was checked by the

on-card BCV, considered as valid, and installed on the card.

The aim is to cause a type confusion to forge a reference of

an object and its content. We consider three classes A, B and

C. They are declared in the listing 1.

c l a s s A {
byte b00 , . . . , bFF

}

c l a s s B {
s h o r t add r

}

c l a s s C {
A a ;

}

Listing 1. Classes which create a type confusion.

The cast mechanism is explained in the JCRE specifica-

tion [1]. When casting an object to another, the JCRE verifies

dynamically if both types are compatible, with a checkcast

instruction. Moreover, an object reference depends on the card

architecture. The following example can be used:

T1 t1; aload @t1

T2 t2 = (T2) t1; ⇐⇒ checkcast T2

astore @t2

The authors want to cast an object b to an object c. If

1 p u b l i c c l a s s AttackExtApp ex tends Ap p l e t {
2 B b ; C c ; boolean c l a s s F o u n d ;
3 . . . / / C o n s t r u c t o r , i n s t a l l method

4 p u b l i c vo id p r o c e s s (APDU apdu) {
5 . . .
6 s w i t c h (b u f f e r [ISO7816 . OFFSET INS]) {
7 cas e INS ILLEGAL CAST :
8 t r y {
9 c = (C) ((O b j e c t) b) ;

10 re turn ; / / Succes s , r e t u r n SW 0 x9000

11 } catch (C l a s s C a s t E x c e p t i o n e) {
12 /∗ F a i l u r e , r e t u r n SW 0x6F00 ∗ /

13 }
14 . . . / / more l a t e r d e f i n e d i n s t r u c t i o n s

15 } } }

Listing 2. checkcast type confusion

b.addr is modified to a specific value, and if this object is

cast to a C instance, you may change the referenced address

by c.a. But the checkcast instruction prevents from this

illegal cast.

Barbu et al. use in their AttackExtApp applet (listing 2)

an illegal cast at line 9. This cast instruction throws a

ClassCastException exception. With specific material

(oscilloscope, etc.), the thrown exception is visible in the

consumption curves. With a time-precision attack, the authors

prevent the checkcast from being thrown with the injection

of laser based fault. When the cast is done, the references

of c.a and b.addr link to the same value. Thus, the c.a

reference may be changed dynamically by b.addr. This trick

offers a read/write access on smart card memory within the

fake A reference. Thanks to this kind of attack, Barbu et al.

could apply their combined attack to inject ill-formed code and

modify any application on Java Card 3.0, such as EMAN1 [3].

B. Code mutation

The mutant generation and detection is a new research

field introduced simultaneously by [9] and [10] using the

concepts of combined attacks and the detection process has

been developed in [11]. Fault injection is a powerful mean

to attack a smart card. Fault can be done into the chip by

the environment perturbation. Consequences of fault attacks

can be perturbation of the chip registers (e.g., the program

counter, the stack pointer, etc.), or the writable memories

(variables and code modifications). These perturbations can

have various effects, and in particular, they can allow an

attacker to gain illegal access to data or services if not

detected. Modifying the memory is a way to generate mutant

code. A mutant can be defined as a piece of code that passes

successfully the byte verification, audit process and any static

analysis. But while the card is hit by the laser beam, a byte

in the memory is modified and then the semantics of the code

is changed and can become hostile.

We use the following example on a debit method (listing 3)

that belongs to the wallet applet to demonstrate how a well-

formed code can become hostile. In this method, the user’s

77 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

PIN (Personal Identification Number) must be validated prior

to the debit operation.

p r i v a t e vo id d e b i t (APDU apdu) {
i f (p i n . i s V a l i d a t e d ()) {

. . . make t h e d e b i t o p e r a t i o n
} e l s e {

ISOExcep t ion . t h r o w I t
(SW PIN VERIFICATION REQUIRED) ;

}
}

Listing 3. Original Java code

TABLE I
BYTE CODE REPRESENTATION BEFORE ATTACK

Byte Byte Code

00 : 18 00 : aload_0

01 : 83 87 04 01 : getfield @8704

04 : 8B 05 23 04 : invokevirtual @0523

07 : 60 00 3B 07 : ifeq 00 59

10 : ... 10 : ...

... ...

59 : 13 63 01 59 : sipush 25345

63 : 8D 08 0D 63 : invokestatic @080D

66 : 7A 66 : return

In table I resides the corresponding byte code representation.

If an attacker wants to bypass the PIN test, he injects a fault

on the cell containing the conditional test byte code. Thus, the

ifeq instruction (byte 0x60) changes to a nop instruction

(byte 0x00). The obtained Java code follows (listing 4) with

its byte code representation in table II. The exception throw

becomes an unreachable code loading to call the debit method,

whatever the PIN has been verified or not.

p r i v a t e vo id d e b i t (APDU apdu) {
. . . make t h e d e b i t o p e r a t i o n
/ / I S O E x c e p t i o n . t h r o w I t

/ / (SW PIN VERIFICATION REQUIRED) ; / / Dead code

}

Listing 4. Mutant Java code

TABLE II
BYTE CODE REPRESENTATION AFTER ATTACK

Byte Byte code

00 : 18 00 : aload_0

01 : 83 00 04 01 : getfield @8704

04 : 8B 00 23 04 : invokevirtual @0523

07 : 00 07 : nop

08 : 00 08 : nop

09 : 3B 09 : pop

10 : ... 10 : ...

... ...

59 : 13 63 01 59 : sipush 25345

63 : 8D 00 0D 63 : invokestatic @080D

66 : 7A 66 : return

We can remark two points. First it is an example of what

can be obtained thanks to a laser beam illumination. But we

can also modify the control flow and jump to an arbitrary code

e.g. an array. It becomes possible to design viruses that can be

activated using a laser beam. The second point concerns the

linking process. The byte code represented here is a linked

code. This process occurred during the loading phase in the

card. This hides the addresses of the API functions avoiding

the design of viruses using function of the API.

C. Virus Example

Often, an attack tries to retrieve the crypto keys thanks

to differential power analysis (DPA), simple power analysis

(SPA), etc. attacks. It is impossible to retrieve the key by

observing simply the memory because key containers are

encrypted there. If one can write the following code (listing 5):

DES Key . getKey (apduBuf fe r , (s h o r t) 0x00) ;
apdu . se tOutgo ingAndSend ((s h o r t) 0x00 ,

DES Key . g e t S i z e ()) ;

Listing 5. The getKey virus

And hide it, in a such a way that it becomes only reachable

while a byte is hit by a laser beam, it opens the possibility to

retrieve easily the cryptographic keys thanks to the API that

will decrypt the key and put its value in clear text in the input

output buffer. Such a virus, which is an active research field

due to its difficulty, can be embedded into an array as shown in

the EMAN 4 attack [12]. Thus the shell code to be embedded

in an array and executed is the following (listing 6):

[AD] g e t f i e l d a t h i s 05 30 / / push DES Key

r e f e r e n c e

[1 9] a l o a d 1
[8B] i n v o k e v i r t u a l 04 02 / / Get APDU b u f f e r

[0 3] s c o n s t 0
[8E] i n v o k e i n t e r f a c e 03 09 30 04 / / ge tKey ()

[3B] pop
[1 9] a l o a d 1
[0 3] s c o n s t 0
[AD] g e t f i e l d a t h i s 05 30 / / push DES Key

r e f e r e n c e

[8E] i n v o k e i n t e r f a c e 01 80 BA 01 / / g e t S i z e ()

[8B] i n v o k e v i r t u a l 03 05 / / s e tOu tgo ingAndSend

[7A] re turn

Listing 6. The virus shell code

A laser modification against a goto_w instruction in the

main program, will change the control flow of the applet and

transfer it to this array.

For enabling the design of such a virus we need to retrieve

the linked address of the key object of the method getKey

and the method address of setOutgoingLength.

D. A static analysis to detect laser beam enabled virus

As we present a way to build viruses in the card we

also propose a way to detect them. The simulation tool

SmartCM [7] aims to analyze the fault effect on a Java

Card program [13]. Two different programs are used in this

analysis. The first one is the mutation engine which takes

as input a model of the card and the applicative program

at the byte code level. It emulates the fault effect on the

program according to a fault model and generates the mutant

code. The mutant code is symbolically interpreted by the

interpreter and if an embedded countermeasure detects the

78 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

deviant behavior the mutant is rejected, else it is stored as a

mutant. The second tool is a risk analysis one. If a mutant is

generated we need to evaluate the impact of its behavior to

decide if it is a hostile or not.

The mutation engine is a brute force process which

modifies the memory where the byte code is stored. The fault

effect on the program is evaluated with an abstract interpreter

that includes the management of the Java annotations. If

the byte that has been impacted by the fault is an opcode,

then according to the kind of memory (encrypted or not) the

value of the new opcode is either 0x00 or 0xFF or any

value in this range. Then the mutation engine uses the smart

card model to evaluate the execution of this new code for

each value of the opcode and propagates the error until a

countermeasure detects it (stack underflow, overflow, wrong

local variable, wrong expected type, etc.). If a return of the

method ProcessAPDU() (which can be considered as a

main for a Java Card applet) of the applet is reached or an

exception is never caught, then we consider that the mutant

cannot be detected. We generate a class file that corresponds

to the mutant code which is stored for further analysis. The

less secure is the card, the more we must interpret the code

and the longer is the simulation.

The mutation of an application can generate several

mutants according to the security of the platform. To help

the programmer to understand the error effect, it outputs the

original Java Code and the Java perspective (if possible) of

the mutant code, it highlights the area where the code has

been modified. Often the mutants are harmless, but a security

officer must check all of them. In order to facilitate this

task we developed a risk analysis module that verifies a set

of security properties on the mutant and decide to tag the

mutants as dangerous or not. In order to have a more accurate

analysis we need the internal map of the method addresses.

Unfortunately this mapping is kept secret and cannot be

obtained.

For two different reasons we need to obtain all the addresses

of the Java Card API for a given platform. And of course a

virus will be platform dependant, but as a card is produced in

hundreds of thousands of units it becomes relevant to try to

obtain this secret information.

III. HOW TO CHARACTERIZE THE CARD?

A. The Attack

The Java Card Specification [1] defines the linking step,

which is done during the loading of CAP file. When the

software is loaded into the card, the Java Card Virtual Machine

provides a way to link the CAP file to install with the installed

Java Card API. This step is done thanks to a token link

resolution references in the Constant Pool component.

To friendly find where each token is used, the Reference

Location component keeps a list of offsets, in the Method

Component.

So, in this loading step, the JCVM translates, with the help

of the Constant Pool component and the Reference

Location component, each reference to methods or

fields used in the CAP file. Each offset for the fields and

methods used in the Method component, are referred in the

Reference Location component. So, the Reference

Location component make a link between each token

to link and the Constant Pool component. For the

following, we will not modify the Reference Location

and the Constant Pool components.

To characterize the embedded Java Card API in a smart card,

we abuse the linking mechanism with the modification of the

natural instructions, as invokestatic, which are followed

by a token. If the card does not have an embedded BCV, a

modification may push the linked reference on the stack and

return it at the end of the current function. Remember that

at the end of each Java method, the operand stack must be

empty.

B. CAP File Modifications

In order to abuse the linking mechanism, we used a

tool developed by the team. Thus, the Cap Map [14] was

developed with the Java language. It provides an easy way to

modify the CAP file.

As explained in the section III-A, we modify the instruction

which follows a token to link. To understand it, we use the

method getSendOutGoingAndSendAddress which

sets the APDU buffer to send (listing 7).

p u b l i c s h o r t getSendOutGoingAndSendAddress
(APDU apdu) {

apdu . se tOutgo ingAndSend (FOO BEGIN , FOO LENGTH) ;
re turn (s h o r t) 0xCAFE ;

}

Listing 7. Java-function to get the getSendOutGoingAndSend address.

/ / f l a g s : 0

/ / max s tack : 3

/ / nargs : 2

/ / m a x l o c a l s : 0

00D8 : [1 9] a l o a d 1
00D9 : [0 3] s c o n s t 0
00DA: [0 3] s c o n s t 0
00DB: [0B]

i n v o k e v i r t u a l 00 08
00DE: [1 1] s s p u s h CAFE
00E1 : [7 8] s r e t u r n

Listing 8. Byte code associated to
method listed in 7.

/ / f l a g s : 0

/ / max s tack : 3

/ / nargs : 2

/ / m a x l o c a l s : 0

00D8 : [0 0] nop
00D9 : [0 0] nop
00DA: [0 0] nop
00DB: [1 1] s s p u s h 00 08
00DE: [0 0] nop
00DF : [0 0] nop
00E0 : [0 0] nop
00E1 : [7 8] s r e t u r n

Listing 9. Modified byte code of
the listing 8.

The associated unlinked byte code is described in the

listing 8. In this byte code, the instruction invokevirtual

is followed by a token (here 8) updated by the address of the

called method (setOutgoingAndSend) during the loading

step. Moreover, the Reference Location component

(listing 10 and the Constant Pool component are not

79 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

modified (they are the same as the original CAP file).

t a g : 9 s i z e : 2b
b y t e i n d e x c o u n t : 8
o f f s e t s t o b y t e i n d i c e s = {

@0067(−>@0067) @002a(−>@0091) @0002(−>@0093)
. . .

}
b y t e 2 i n d e x c o u n t : 31
o f f s e t s t o b y t e 2 i n d i c e s = {

. . .
@0006(−>@00B1) @0014(−>@00C5) @0017(−>@00DC)
. . .

}

Listing 10. Reference Location component of the malicious applet.

In the Reference Location (listing 10), the offset

0x00DC corresponds to the offset to link in our malicious

method (listing 8) (here the parameter of the sspush

instruction). When the Byte Code Linker updates the

references in the Method component, it uses this information

to update correctly each token as in the original CAP file.

To obtain the linked address, we modify the opcode

invokevirtual by sspush as explained in the listing 9.

So, when executing the linked byte code, the function address

is pushed on the stack and returned at the end of the function.

C. Characterizing the complete API

Using this approach we are able to use the on board

linker to generate the correct information, to store it on top

of the stack and to send it back to the reader. Thanks to

this information leakage we are able to obtain all the linked

addresses of the Java Card API for a given card. For retrieving

one address we need to build one CAP file. Retrieving the

complete API, needs to generate 98 test cases for the methods

of the classes and 60 test cases for the interfaces. All the test

cases are validated whatever the tested card is. It means that

the effort to design the test cases for retrieving the addresses

will be reusable on all the cards. This attack is completely

generic and independent of the platform. It depends only on

the implementation of the specification e.g. 2.1.1, 2.2.1 or 2.2.

Moreover it allows us to characterize the level of implemen-

tation of a specification. All the methods must be implemented

for a given specification but surprisingly some cards do not

implement completely the specification and thus cannot be

considered compliant with it.

D. Experimental Results

For the evaluation of this attack, we tried on the same

cards, used at SSTIC’09 [3], plus a new one. Each card,

listed in the table III, has a different manufacturer or is a

different model.

On these cards, an applet with the modifications explained

in the section III-B is sent. The process method contains

the following code (listing 11):

Reference Java Card GP Characteristic

a-21a 2.1.1 2.0.1

a-22a 2.2 2.1 64k EEPROM

a-22c 2.2.1 2.1.1 36k EEPROM, RSA

b-21a 2.1.1 2.1.2 16k EEPROM, RSA

c-22a 2.1.1 2.0.1 RSA

c-22c 2.2 2.1.1 72k EEPROM, dual interface, RSA

d-21a 2.1 2.0.1 32K EEPROM, RSA

d-22b 2.2.1 2.1.1 16k EEPROM

e-21a 2.2 2.1 72k EEPROM

TABLE III
CARDS USED DURING THIS EVALUATION

s w i t c h (a p d u B u f f e r [ISO7816 . OFFSET INS]) {
c as e INS GET GET KEY ADDRESS :

r e t = t h i s . ge tGe tKeyAddress () ;
U t i l . s e t S h o r t (apduBuf fe r , (s h o r t) 0x00 , r e t) ;
apdu . se tOutgo ingAndSend ((s h o r t) 0x00 ,

SHORT LENGTH) ;
break ;

c as e INS SEND OUTGOING AND SEND ADDRESS :
r e t = t h i s . ge tSendOutGoingAndSendAddress (apdu) ;
U t i l . s e t S h o r t (apduBuf fe r , (s h o r t) 0x00 , r e t) ;
apdu . se tOutgo ingAndSend ((s h o r t) 0x00 ,

SHORT LENGTH) ;
break ;

d e f a u l t :
ISOExcep t ion . t h r o w I t

(ISO7816 . SW INS NOT SUPPORTED) ;

Listing 11. Our process method.

Moreover, the object Key is a DESKey type as described

in the listing 12.

t h i s . DES Key = (DESKey) KeyBui lde r . bu i ldKey
(KeyBui lde r . TYPE DES TRANSIENT DESELECT ,

KeyBui lde r . LENGTH DES3 2KEY , f a l s e) ;
t h i s . DES Key . se tKey (INIT KEY , (s h o r t) 0x00) ;

Listing 12. Applet Key initialization.

When the CAP file has been modified by the Cap Map [14],

it is sent using OPAL [15] which provides the way to auto-

mate the evaluation of the targeted cards. We succeeded to

install our malicious applet into each card listed in table III.

We described, in the table IV, the value returned by the

getGetKeyAddress and getSetOutGoingAndSend

methods.

Reference getKey address setOutgoingAndSend address

a-21a 0x8C08 0x0308

a-22a 0x080A 0x0308

a-22c 0x020F 0x0308

b-21a 0x3267 0x0308

c-22a 0x810B 0x0803

c-22b 0x810B 0x0803

d-21a 0x0003 0x0008

d-22b 0x80BA 0x0803

e-21a 0x142F 0x0308

TABLE IV
RETURNED VALUES

The first observation concerns the address of

setOutGoingAndSend method. This method may be

80 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

full-java implemented and may have the same address

on each card (depending to little or big-endian memory

organization).

On the other hand, the obtained address, for the card with

the reference d-21a, corresponds to the token referred in the

Constant Pool component. As we work in a black box

model, the implemented countermeasures may provide a way

to not link if the token is preceded by an illegal instruction.

Another counter-measure may be the dynamically link during

the applet execution.

Finally, some getKey methods are implemented in the

EEPROM memory (like a-21a, c-22a, c-22b and d-22b).

To prevent the Byte Code Linker from giving some infor-

mation about the Java Card API, an interesting countermea-

sure is, during the applet loading, to resolve just the token

preceded by the specific instruction (like invokevirtual,

invokestatic, getstatic, setstatic, etc.).

IV. CONCLUSION

In this paper, we presented a novel and generic method

to lure the embedded linker of a smart card forcing it to

link a token with a non authorized instruction, then this

information is stored in the input output buffer and sent to

the reader. It becomes possible to characterize completely

the Java Card API. For that purpose, we built a complete

set of CAP files which can be used to extract the addresses

of the API whatever the platform is. This allows us to

build very efficient viruses to be uploaded into the card

and in particular to retrieve the container of crypto keys.

We have shown with the experimental results that most

cards do not have any counter measures against this attack.

We will continue this evaluation on the most recent cards

in order to detect if some of them embedded countermeasures.

The next step will consist in hiding the virus into a regular

application, which is the subject of a thesis. For that purpose

we will need to inject such a code with caring to the known

countermeasures.

REFERENCES

[1] Oracle, “Java Card Platform Specification,”
http://www.oracle.com/technetwork/java/javacard/.

[2] Global Platform, “Card Specification v2.2,”
http://www.globalplatform.org/, 2006.

[3] J. Iguchi-Cartigny and J.-L. Lanet, “Evaluation de linjection de code
malicieux dans une java card,” in Symposium sur la Sécurité des

Technologies de lInformation et de la Communication, SSTIC, 2009.
[4] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, “Fault

attacks on RSA with CRT: Concrete results and practical countermea-
sures,” Cryptographic Hardware and Embedded Systems-CHES 2002,
pp. 81–95, 2003.

[5] L. Hemme, “A differential fault attack against early rounds of (triple)
DES,” Cryptographic Hardware and Embedded Systems-CHES 2004,
pp. 170–217, 2004.

[6] G. Piret and J.-J. Quisquater, “A differential fault attack technique
against SPN structures, with application to the AES and KHAZAD,”
Cryptographic Hardware and Embedded Systems-CHES 2003, pp. 77–
88, 2003.

[7] J.-B. Machemie, C. Mazin, J.-L. Lanet, and J. Cartigny, “SmartCM A
Smart Card Fault Injection Simulator,” IEEE International Workshop on

Information Forensics and Security - WIFS, 2011.
[8] E. Hubbers and E. Poll, “Transactions and non-atomic API calls in Java

Card: specification ambiguity and strange implementation behaviours,”
Radboud University Nijmegen, Dept. of Computer Science NIII-R0438,
2004.

[9] G. Barbu, H. Thiebeauld, and V. Guerin, “Attacks on java card 3.0 com-
bining fault and logical attacks,” Smart Card Research and Advanced

Application, pp. 148–163, 2010.
[10] E. Vetillard and A. Ferrari, “Combined attacks and countermeasures,”

Smart Card Research and Advanced Application, pp. 133–147, 2010.
[11] A. Séré, J. Iguchi-Cartigny, and J.-L. Lanet, “Checking the paths to

identify mutant application on embedded systems,” Future Generation

Information Technology, pp. 459–468, 2010.
[12] G. Bouffard, J. Iguchi-Cartingy, and J.-L. Lanet, “Combined software

and hardware attacks on the java card control flow,” CARDIS, september
2011.

[13] J.-B. Machemie, J.-L. Lanet, G. Bouffard, J.-Y. Poichotte, and J.-P. Wary,
“Evaluation of the ability to transform sim applications into hostile
applications,” CARDIS, september 2011.

[14] Smart Secure Devices (SSD) Team – XLIM, Université de Limoges,
“The CAP file manipulator,” http://secinfo.msi.unilim.fr/.

[15] A. Bkakria, G. Bouffard, J. Iguchy-Cartigny, and J.-L. Lanet, “OPAL:
an open-source Global Platform Java Library which includes the remote
application management over HTTP,” e-smart, september 2011.

81 SARSSI-2012

7ème Conférence sur la Sécurité des Architectures Réseaux et Systèmes d'Information - Cabourg 22-25 mai 2012

